首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of bacteria associated with the deer tick (Ixodes scapularis) was assessed using PCR amplification, cloning, and sequencing of 16S rRNA genes originating from seven ticks collected from Nantucket Island and Wellfleet, Cape Cod, Mass. The majority of sequences obtained originated from gram-negative proteobacteria. Four intracellular bacteria were detected including strains of Ehrlichia, Rickettsia, and Wolbachia and an organism related to intracellular insect symbionts from the Cytophaga-Flavobacterium-Bacteroides group. Several strains of members of the Sphingomonadaceae were also detected in all but one tick. The results provide a view of the diversity of bacteria associated with I. scapularis ticks in the field.  相似文献   

2.
Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex.  相似文献   

3.
4.
5.
6.

Background

The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype.

Results

We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying.

Conclusion

We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects.  相似文献   

7.
Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases.  相似文献   

8.
During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.  相似文献   

9.
Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota.  相似文献   

10.
We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario''s Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0–9 years old) and older adults (55–74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases.  相似文献   

11.
Ixodes scapularis is the specific arthropod vector for a number of globally prevalent infections, including Lyme disease caused by the bacterium Borrelia burgdorferi. A feeding-induced and acellular epithelial barrier, known as the peritrophic membrane (PM) is detectable in I. scapularis. However, whether or how the PM influences the persistence of major tick-borne pathogens, such as B. burgdorferi, remains largely unknown. Mass spectrometry-based proteome analyses of isolated PM from fed ticks revealed that the membrane contains a few detectable proteins, including a predominant and immunogenic 60 kDa protein with homology to arthropod chitin deacetylase (CDA), herein termed I. scapularis CDA-like protein or IsCDA. Although IsCDA is primarily expressed in the gut and induced early during tick feeding, its silencing via RNA interference failed to influence either the occurrence of the PM or spirochete persistence, suggesting a redundant role of IsCDA in tick biology and host-pathogen interaction. However, treatment of ticks with antibodies against IsCDA, one of the most predominant protein components of PM, affected B. burgdorferi survival, significantly augmenting pathogen levels within ticks but without influencing the levels of total gut bacteria. These studies suggested a preferential role of tick PM in limiting persistence of B. burgdorferi within the vector. Further understanding of the mechanisms by which vector components contribute to pathogen survival may help the development of new strategies to interfere with the infection.  相似文献   

12.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

13.
The blacklegged tick, Ixodes scapularis, is of significant public health importance as a vector of Borrelia burgdorferi, the agent of Lyme borreliosis. The timing of seasonal activity of each immature I. scapularis life stage relative to the next is critical for the maintenance of B. burgdorferi because larvae must feed after an infected nymph to efficiently acquire the infection from reservoir hosts. Recent studies have shown that some strains of B. burgdorferi do not persist in the primary reservoir host for more than a few weeks, thereby shortening the window of opportunity between nymphal and larval feeding that sustains their enzootic maintenance. We tested the hypothesis that climate is predictive of geographic variation in the seasonal activity of I. scapularis, which in turn differentially influences the distribution of B. burgdorferi genotypes within the geographic range of I. scapularis. We analyzed the relationships between climate, seasonal activity of I. scapularis, and B. burgdorferi genotype frequency in 30 geographically diverse sites in the northeastern and midwestern United States. We found that the magnitude of the difference between summer and winter daily temperature maximums was positively correlated with the degree of seasonal synchrony of the two immature stages of I. scapularis. Genotyping revealed an enrichment of 16S-23S rRNA intergenic spacer restriction fragment length polymorphism sequence type 1 strains relative to others at sites with lower seasonal synchrony. We conclude that climate-associated variability in the timing of I. scapularis host seeking contributes to geographic heterogeneities in the frequencies of B. burgdorferi genotypes, with potential consequences for Lyme borreliosis morbidity.An increasingly important area of research in infectious disease epidemiology is the influence of pathogen strain diversity on patterns of disease risk and clinical outcome. Strain-specific pathogenicity or transmissibility can be important clinical and epidemiological parameters; for example, only a subset of Neisseria meningitidis strains are responsible for invasive infections leading to meningitis (1). Geography and environmental features influence the genetic structure of certain pathogens by regulating their distribution, dispersal, or population size (8, 31, 49). Accordingly, a heterogeneous environment will result in spatial structuring of genotype frequencies, with possible epidemiological implications.Lyme borreliosis is a tick-borne zoonosis caused by Borrelia burgdorferi, a spirochetal bacterium that exhibits genetic diversity throughout its range in eastern North America (12, 60), where it is maintained in a horizontal transmission cycle between its vector, the blacklegged tick Ixodes scapularis, and vertebrate reservoir hosts. I. scapularis has a two-year life cycle in which it takes three blood meals, one per life stage, with the two subadult stages responsible for the enzootic maintenance of B. burgdorferi (2, 3, 51). Larval ticks hatch uninfected from eggs (41) and acquire the spirochetes from infected reservoir hosts. Infected larvae maintain the spirochetes transstadially, allowing them to transmit B. burgdorferi to uninfected reservoirs during their nymphal blood meal the following summer. The seasonal timing of activity, or phenology, of each tick life stage relative to the next is a critical factor in the maintenance of B. burgdorferi because larvae typically must feed after an infected nymph in order to acquire the bacteria (32).Previous studies in Europe of tick-borne encephalitis virus have shown that seasonal synchrony of immature ticks is necessary for the maintenance of the virus in natural enzootic cycles because nonsystemic infections are transmitted from nymphs to larvae feeding in close proximity on the same individual reservoir rodent (48). Furthermore, seasonal synchrony of immature tick activity, a prerequisite of cofeeding, was found to be correlated with climate (47). Although it is possible for an I. scapularis larva to become infected with B. burgdorferi by simultaneously feeding in close proximity to an infected nymph, a role for cofeeding transmission in the enzootic maintenance of B. burgdorferi in North America has not been established (43). Rather, until recently, the existing evidence indicated that B. burgdorferi causes life-long systemic infections in reservoirs that allow for its maintenance in the absence of seasonal synchrony of I. scapularis immatures (18). However, recent studies suggest that this may not always be the case (34) and that there are differences in the duration of infectiousness that are strain specific (16, 28).We hypothesized that large-scale, climate-driven geographic variability in the host seeking phenology of immature I. scapularis ticks is associated with heterogeneity in the frequencies of strains acquired by larval ticks. Using regression models and accounting for spatial autocorrelation, we examined the relationships between climate, the temporal synchrony of larval and nymphal seasonal host seeking activity, and B. burgdorferi genotype frequency in ticks collected from 30 geographically diverse sites systematically selected for their locations throughout the northeastern and midwestern United States.Here we present empirical evidence that climate patterns, specifically, regional variation in summer and winter temperature cycle extremes, are associated with variation in the seasonal synchrony of I. scapularis larval and nymphal host seeking activity. Furthermore, both climate and the differences in the seasonal synchrony of the two immature tick stages are related to geographic variation in B. burgdorferi genotype frequency. Our results point to the impact of climate upon the natural dynamics of enzootic transmission and population genetic structure of an important vector-borne human pathogen, with possible implications for the distribution of human disease risk and epidemiology.  相似文献   

14.
Ixodes scapularis ticks transmit a wide array of human and animal pathogens including Borrelia burgdorferi; however, how tick immune components influence the persistence of invading pathogens remains unknown. As originally demonstrated in Caenorhabditis elegans and later in Anopheles gambiae, we show here that an acellular gut barrier, resulting from the tyrosine cross-linking of the extracellular matrix, also exists in I. scapularis ticks. This dityrosine network (DTN) is dependent upon a dual oxidase (Duox), which is a member of the NADPH oxidase family. The Ixodes genome encodes for a single Duox and at least 16 potential peroxidase proteins, one of which, annotated as ISCW017368, together with Duox has been found to be indispensible for DTN formation. This barrier influences pathogen survival in the gut, as an impaired DTN in Doux knockdown or in specific peroxidase knockdown ticks, results in reduced levels of B. burgdorferi persistence within ticks. Absence of a complete DTN formation in knockdown ticks leads to the activation of specific tick innate immune pathway genes that potentially resulted in the reduction of spirochete levels. Together, these results highlighted the evolution of the DTN in a diverse set of arthropod vectors, including ticks, and its role in protecting invading pathogens like B. burgdorferi. Further understanding of the molecular basis of tick innate immune responses, vector-pathogen interaction, and their contributions in microbial persistence may help the development of new targets for disrupting the pathogen life cycle.  相似文献   

15.
The incidence of tick‐borne disease continues to increase in humans and companion animals in the United States, yet distribution maps for several tick vectors in Oklahoma, including Dermacentor variabilis, Dermacentor albipictus, Ixodes scapularis, and Amblyomma maculatum, are not available or are outdated. To address this issue, county‐scale tick records from peer‐reviewed literature and passive collections were reviewed for Oklahoma. Additionally, dry ice traps, tick drags, and harvested deer were utilized to actively collect adult ticks throughout the state. Through these methods, D. variabilis, D. albipictus, I. scapularis, and A. maculatum were identified in 88% (68/77), 45.4% (35/77), 66.2% (51/77), and 64.9% (50/77) of the counties in Oklahoma, respectively. Baseline maps were developed for the distribution of D. variabilis and D. albipictus and distribution maps were updated for I. scapularis and A. maculatum. This data confirms that these four species of ticks continue to be widespread within Oklahoma with a western expansion of the range of I. scapularis within the state. These results assist efforts to better understand the epidemiology of the different diseases caused by pathogens transmitted by these tick species within the Great Plains region.  相似文献   

16.
In recent years, human tick‐borne disease occurrence has risen in Oklahoma, U.S.A., but year‐round data on tick presence in frequently used recreational areas is not widely available. In this study, ticks were collected monthly for one year at residential and non‐residential sites in a suburban area of Oklahoma County, OK, U.S.A. At each trapping site, dry ice traps were used in both woodland and grassland areas and fabric tick drags were used in grassland areas. Four species were collected from each park: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Prior to this study, A. americanum was the only species with an established population in Oklahoma County. Consistent with this, A. americanum was collected in all months of the year and accounted for over 90% of ticks collected at each site. Based on our tick survey, we report that A. maculatum, D. variabilis, and I. scapularis, which were each collected in numbers greater than six within a single sampling occasion, are now each confirmed as established populations in Oklahoma County.  相似文献   

17.
Haemaphysalis longicornis, the Asian longhorned tick, is an invasive ixodid tick that has rapidly spread across the northeastern and southeastern regions of the United States since first reported in 2017. The emergence of H. longicornis presents a potential threat for livestock, wildlife, and human health as the host associations and vector potential of this invasive pest in the United States are poorly understood. Previous field data from the United States has shown that H. longicornis was not associated with natural populations of small mammals or birds, but they show a preference for medium sized mammals in laboratory experiments. Therefore, medium and large sized mammals were sampled on Staten Island, New York, United States, to determine H. longicornis host associations and vector potential for a range of human and veterinary pathogens. A total of 97 hosts were sampled and five species of tick (Amblyomma americanum, Dermacentor variabilis, H. longicornis, Ixodes scapularis, Ixodes cookei) were found feeding concurrently on these hosts. Haemaphysalis longicornis was found in the highest proportions compared with other native tick species on raccoons (55.4%), Virginia opossums (28.9%), and white-tailed deer (11.5%). Tissue, blood, and engorged larvae were tested for 17 different pathogens using a nanoscale PCR platform. Infection with five pathogens (Borrelia burgdorferi, Anaplasma phagocytophilum, Rickettsia spp., Mycoplasma haemocanis, and Bartonella spp.) was detected in host samples, but no pathogens were found in any larval samples. These results suggest that although large and medium sized mammals feed large numbers of H. longicornis ticks in the environment, there is presently a low potential for H. longicornis to acquire pathogens from these wildlife hosts.  相似文献   

18.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

19.
The etiologic agent of granulocytic anaplasmosis, Anaplasma phagocytophilum, has a circum-global distribution within the northern hemisphere and shows a host species predilection that varies by the geographic region in which the disease is found. Adaptation by the bacterium to a host species potentially contributes to the variation found worldwide but this is confounded by the bacterium's relationship with its tick vectors, all of which belong to the Ixodes ricinus group. We tested the hypothesis that tick vector species collected from geographic regions sympatric with particular A. phagocytophilum strains will show evidence of a higher degree of vector competence than will tick species and allopatric A. phagocytophilum strains. A reciprocal cross-transmission experiment was performed using an eastern and a western North American strain of A. phagocytophilum (Webster and MRK, respectively) and the two tick species, I. scapularis and I. pacificus, most commonly associated with human and animal transmission of the bacteria in the United States. The western tick, I. pacificus, showed a significantly higher vector competence for A. phagocytophilum than I. scapularis and the eastern isolate, Webster, was more transmissible than its western counterpart, MRK. These results indicate that geographic variation in host susceptibility to A. phagocytophilum strains may play a more important role in the epidemiology of granulocytic anaplasmosis than does the competence of its tick vectors to transmit the pathogen.  相似文献   

20.
Ixodes scapularis, the tick vector of Lyme disease and human granulocytic ehrlichiosis (HGE), is prevalent in much of southern New York state. The distribution of this species has increased, as have reported cases of both Lyme disease and HGE. The unreliability of case reports, however, demonstrates the need for tick and pathogen surveillance in order to accurately define areas of high risk. In this study, a total of 89,550 m2 at 34 study sites was drag sampled in 1995 and a total of 51,540 m2 at 40 sites was sampled in 1996 to determine tick and pathogen distribution in southern New York state. I. scapularis was collected from 90% of the sites sampled, and regionally, a 2.5-fold increase in nymphal abundance occurred from 1995 to 1996. I. scapularis individuals from all sites were infected with Borrelia burgdorferi in 1995, while an examination of ticks for both B. burgdorferi and the agent of HGE in 1996 confirmed that these organisms were present in all counties; the average coinfection rate was 1.9%. No correlation was found between estimated risk and reported cases of Lyme disease. The geographic disparity of risk observed among sites in this study underscores the need for vector and pathogen surveillance on a regional level. An entomologic risk index can help identify sites for targeted tick control efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号