首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Oocyte developmental competence is acquired during folliculogenesis and regulated by complex molecular mechanisms. Several molecules are involved in these mechanisms, including microRNAs (miRNAs) that are essential for oocyte‐specific processes throughout the development. The objective of this study was to identify the expression profile of miRNAs in porcine oocytes derived from follicles of different sizes using RNA deep sequencing. Oocytes were aspirated from large (LO; 3–6 mm) or small (SO; 1.5–1.9 mm) follicles and tested for developmental competence and chromatin configurations. Small RNA libraries were constructed from both groups and then sequenced in an Illumina NextSeq. 500. Oocytes from the LO group exhibited higher developmental competence and different chromatin configuration compared with oocytes from the SO group. In total, 167 and 162 known miRNAs were detected in the LO and SO groups, respectively. MiR‐205, miR‐16, miR‐148a‐3p, and miR‐125b were among the top 10 highly expressed miRNAs in both groups. Eight miRNAs were differentially expressed (DE) between both groups. Target gene prediction and pathway analysis revealed 46 pathways that were enriched with miRNA‐target genes. The oocyte meiosis pathway and signaling pathways including FoxO, PI3K‐Akt, and cAMP were predictably targeted by DE miRNAs. These results give more insights into the potential role of miRNAs in regulating the oocyte development.  相似文献   

4.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

5.
6.
Intramuscular fat (IMF) is one of the fat traits that has economic importance in the pork industry. Longissimus dorsi muscle contains IMF and is suitable for studying adipogenesis. To discover further potential regulatory miRNAs that may influence adipogenesis, we analyzed miRNA in the longissimus dorsi muscle of Yorkshire (YY, lean‐type) and Chinese Wannanhua (WH, fatty) pigs using miRNA sequencing (miRNA‐seq). From this dataset, we identified 598 unique miRNAs comprising 325 pre‐miRNAs and 273 novel pre‐miRNAs through comparison with known miRNAs in miRBase version 21. We found 42 miRNAs including nine up‐ and 33 down‐regulated between the YY and WH pigs. Moreover, we found two miRNAs, miR‐196a/b (miR‐196a, miR‐196b‐5p), that had the highest level of expression in WH pigs, and miR‐196a/b may influence porcine adipogenesis in longissimus dorsi muscle through an adipocytokine signaling pathway.  相似文献   

7.
  • Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses.
  • In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer.
  • We identified 161 potential miRNAs representing 42 families, including monocot/tissue‐specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars.
  • Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT‐PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA–mRNA target pairing using RNA ligase‐mediated 5′ Rapid Amplification of cDNA Ends (5′RLM‐RACE) PCR.
  相似文献   

8.
9.
MicroRNAs (miRNA) have been implicated in a variety of pathological conditions including infectious diseases. Knowledge of the miRNAs affected by poly(I:C), a synthetic analog of viral double‐stranded RNA, in porcine airway epithelial cells (PAECs) contributes to understanding the mechanisms of swine viral respiratory diseases, which bring enormous economic loss worldwide every year. In this study, we used high throughput sequencing to profile miRNA expression in PAECs treated with poly(I:C) as compared to the untreated control. This approach revealed 23 differentially expressed miRNAs (DEMs), five of which have not been implicated in viral infection before. Nineteen of the 23 miRNAs were down‐regulated including members of the miR‐17‐92 cluster, a well‐known polycistronic oncomir and extensively involved in viral infection in humans. Target genes of DEMs, predicted using bioinformatic methods and validated by luciferase reporter analysis on two representative DEMs, were significantly enriched in several pathways including transforming growth factor‐β signaling. A large quantity of sequence variations (isomiRs) were found including a substitution at position 5, which was verified to redirect miRNAs to a new spectrum of targets by luciferase reporter assay together with bioinformatics analysis. Twelve novel porcine miRNAs conserved in other species were identified by homology analysis together with cloning verification. Furthermore, the expression analysis revealed the potential importance of three novel miRNAs in porcine immune response to viruses. Overall, our data contribute to clarifying the mechanisms underlying the host immune response against respiratory viruses in pigs, and enriches the repertoire of porcine miRNAs.  相似文献   

10.
11.
12.
13.
植物miRNA在调控基因表达、细胞周期、生物体发育、抗逆等方面起重要作用。为研究胡杨(Populus euphratica Oliv.)的耐盐机制,以1年生胡杨无性系幼苗为材料,构建具有空间代表性的盐胁迫胡杨cDNA文库,利用二代测序技术测定NaCl胁迫下和正常培养条件下胡杨叶和根miRNA表达情况。结果表明,不同的miRNA之间表达量存在明显差异,表达丰度最高的miRNA有miR156、miR157、miR165、miR166和miR167等,合计占总表达量的90%以上。胡杨根部存在特异表达的miRNA,在整个耐盐调控机制中发挥着生理调节、分子调控和信号传导等极为重要的作用。盐处理样品中发现大量响应盐胁迫的miRNA,对这些转录因子进行靶基因预测和注释后,发现很多盐胁迫响应的miRNA与NAC和SPL等重要转录因子家族相关,与前人的结论一致,另外还发现许多miRNA的调控对象是ATP酶和激素响应因子。  相似文献   

14.
Objective: MicroRNAs (miRNAs) are negative regulators of gene expression that play important roles in cell processes such as proliferation, development and differentiation. Recently, it has been reported that miRNAs are related to development of carcinogenesis. The aim of this study was to identify miRNAs associated with terminal immortalization of Epstein–Barr virus (EBV)‐transformed lymphoblastoid cell line (LCL) and associated clinical traits. Material and Methods: Hence, we performed miRNA microarray approach with early‐ (p6) and late‐passage (p161) LCLs. Results and Conclusion: Microarray data showed that nine miRNAs (miR‐20b*, miR‐28‐5p, miR‐99a, miR‐125b, miR‐151‐3p, miR‐151:9.1, miR‐216a, miR‐223* and miR‐1296) were differentially expressed in most LCLs during long‐term culture. In particular, miR‐125b was up‐regulated in all the tested late‐passage LCLs. miR‐99a, miR‐125b, miR‐216a and miR‐1296 were putative negative regulators of RASGRP3, GPR160, PRKCH and XAF1, respectively, which were found to be differentially expressed in LCLs during long‐term culture in a previous study. Linear regression analysis showed that miR‐200a and miR‐296‐3p correlated with triglyceride and HbA1C levels, respectively, suggesting that miRNA signatures of LCLs could provide information on the donor’s health. In conclusion, our study suggests that expression changes of specific miRNAs may be required for terminal immortalization of LCLs. Thus, differentially expressed miRNAs would be a potential marker for completion of cell immortalization during EBV‐mediated tumorigenesis.  相似文献   

15.
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre‐miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat‐specific miRNAs that were generated from 87 and 1088 pre‐miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub‐classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the results indicate that some miRNAs are involved in the compatible wheat‐Pst susceptibility interaction. Importantly, tae‐miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion‐binding protein, also exhibited upregulated expression but a divergent expression trend. PC‐3P‐7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat‐Pst susceptibility interaction.  相似文献   

16.
17.
18.
19.
20.
Russet skin is a very important trait that allows pear fruits to defend themselves against biotic and abiotic stresses. Small RNAs from a russet skin mutant ‘Xiusu’ derived from a ‘Dangshansuli’ pear were sequenced by high-throughput sequencing to reveal the role of miRNAs in the regulation of pear russet skin formation. A total of 12,158,547 and 12,053,678 high-quality reads were obtained for ‘Dangshansuli’ and ‘Xiusu’, respectively, with the majority between 19 and 25 nt in size. Forty-four and 45 known miRNAs were identified in the ‘Dangshansuli’ and ‘Xiusu’ libraries, respectively, and these miRNAs belonged to 31 miRNA families. The expression levels of 534 miRNAs varied drastically, ranging from 0 to 493,274 reads with a logarithm of fold changes between ?9.33 and 12.71. In addition, 215 and 228 novel miRNAs with high-abundance were detected in ‘Dangshansuli’ and ‘Xiusu’, respectively. Many miRNAs, especially miR396, miR408, and the novel miRNAs, miR102, miR274, miR42, and miR442, were potentially involved in suberin biosynthesis and showed differential expression between the exocarp of ‘Dangshansuli’ and that of ‘Xiusu’. The relative expression levels of known and novel miRNAs as determined by quantitative PCR indicated that those miRNAs may contribute to the formation of mutant russet pear fruit skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号