首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Six restriction fragment length polymorphisms (RFLPs) of the gene are described. Three of these are in linkage disequilibrium. Hybridisation with sub-probes allowed localisation of the RFLPs to different regions of the gene.  相似文献   

2.
3.
The acetylenic thioester, 2-octynoyl-CoA, inactivates medium chain acyl-CoA dehydrogenase from pig kidney by two distinct pathways depending on the redox state of the FAD prosthetic group. Inactivation of the oxidized dehydrogenase occurs with labeling of an active site glutamate residue and elimination of CoASH. Incubation of the reduced dehydrogenase with 2-octynoyl-CoA rapidly forms a kinetically stable dihydroflavin species which is resistant to reoxidation using trans-2-octenoyl-CoA, molecular oxygen, or electron transferring flavoprotein. The reduced enzyme derivative shows extensive bleaching at 446 nm with shoulders at 320 and 380 nm. Denaturation of the reduced derivative in 80% methanol yields a mixture of products which was characterized by HPLC, by uv/vis, and by radiolabeling experiments. Approximately 20% of the flavin is recovered as oxidized FAD, about 40% is retained covalently attached to the protein, and the remainder is distributed between several species eluting after FAD on reverse-phase HPLC. The spectrum of one of these species ressembles that of a N(5)-C(4a) dihydroflavin adduct. These data suggest that a primary reduced flavin species undergoes various rearrangements during release from the protein. The possibility that the inactive modified enzyme represents a covalent adduct between 2-octynoyl-CoA and reduced flavin is discussed. Analogous experiments using enzyme substituted with 1,5-dihydro-5-deaza-FAD show rapid and quantitative reoxidation of the flavin by 0.5 eq of 2-octynoyl-CoA.  相似文献   

4.
The acetylenic alpha-hydroxy acid 2-hydroxy-3-butynoate (alpha HB) is a substrate and an irreversible inactivator of the FAD-containing flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii. On the average, the enzyme undergoes five catalytic turnovers with alpha HB in air at pH 7.0 before being inactivated. Irreversible inactivation is due to the conversion of the flavin to a pink adduct with visible absorption peaks at 522, 382, and 330 nm and weak fluorescence with an emission maximum at 635 nm. The adduct is stable and can be released from the enzyme and purified. It retains a structure analogous to FAD since it binds to the FAD-specific apo-D-amino acid oxidase. It can be further converted to an FMN analogue with phosphodiesterase which binds to the FMN-specific apoflavodoxin. Experiments were conducted to test whether inactivation was initiated by an alpha HB allene carbanion or the dehydrogenation product of alpha HB. Kinetic studies proved inconclusive in that a rapid equilibrium between an oxidized enzyme--allene carbanion pair and reduced enzyme--keto acid pair would make these two species kinetically equivalent. The olefinic substrate 2-hydroxy-3-butenoate, however, produced no flavin adduct. Since the keto acid derived from the oxidation of this alpha-hydroxy acid is expected to be as reactive as 2-keto-3-butynoate, it is concluded that an allene carbanion produced by abstraction of the alpha-hydrogen of alpha HB is the reactive species which covalently adds to the flavin.  相似文献   

5.
6.
7.
Rudik I  Bell A  Tonge PJ  Thorpe C 《Biochemistry》2000,39(1):92-101
4-OH-Cinnamoyl-CoA has been synthesized as a probe of the active site in the medium chain acyl-CoA dehydrogenase. The protonated form of the free ligand (lambda(max) = 336 nm) yields the corresponding phenolate (lambda(max) = 388 nm) with a pK of 8.9. 4-OH-Cinnamoyl-CoA binds tightly (K(d) = 47 nM, pH 6) to the pig kidney dehydrogenase with a prominent new band at 388 nm, suggesting ionization of the bound ligand. However, this spectrum reflects polarization, not deprotonation, of the neutral form of the ligand. Thus, the 388 nm band is abolished as the pH is raised (not lowered), and analogous spectral and pH behavior is observed with the nonionizable analogue 4-methoxycinnamoyl-CoA. Studies with wild type, E99G, and E376Q mutants of the human medium chain acyl-CoA dehydrogenase showed that these two active site carboxylates strongly suppress ionization of the 4-OH ligand. Binding to the double mutant E99G/E376Q gives an intense new band as the pH is raised (pK = 7.8), with an absorbance maximum at 498 nm resembling the natural 4-OH-cinnamoyl-thioester chromophore of the photoactive yellow protein. Raman difference spectroscopy in water and D(2)O, using the free ligand and wild-type and double-mutant enzyme.ligand complexes, confirms that the 4-OH group of the thioester is ionized only when bound to the double mutant. These data demonstrate the strong electrostatic coupling between ligand and enzyme, and the critical role Glu376 plays in modulating thioester polarization in the medium chain acyl-CoA dehydrogenase.  相似文献   

8.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

9.
The acyl-CoA dehydrogenases are a family of flavin adenine dinucleotide-containing enzymes that catalyze the first step in the beta-oxidation of fatty acids and catabolism of some amino acids. They exhibit high sequence identity and yet are quite specific in their substrate binding. Short chain acyl-CoA dehydrogenase has maximal activity toward butyryl-CoA and negligible activity toward substrates longer than octanoyl-CoA. The crystal structure of rat short chain acyl-CoA dehydrogenase complexed with the inhibitor acetoacetyl-CoA has been determined at 2.25 A resolution. Short chain acyl-CoA dehydrogenase is a homotetramer with a subunit mass of 43 kDa and crystallizes in the space group P321 with a = 143.61 A and c = 77.46 A. There are two monomers in the asymmetric unit. The overall structure of short chain acyl-CoA dehydrogenase is very similar to those of medium chain acyl-CoA dehydrogenase, isovaleryl-CoA dehydrogenase, and bacterial short chain acyl-CoA dehydrogenase with a three-domain structure composed of N- and C-terminal alpha-helical domains separated by a beta-sheet domain. Comparison to other acyl-CoA dehydrogenases has provided additional insight into the basis of substrate specificity and the nature of the oxidase activity in this enzyme family. Ten reported pathogenic human mutations and two polymorphisms have been mapped onto the structure of short chain acyl-CoA dehydrogenase. None of the mutations directly affect the binding cavity or intersubunit interactions.  相似文献   

10.
Short chain acyl-CoA (SCA), medium chain acyl-CoA (MCA), and isovaleryl-CoA (IV) dehydrogenases were purified to homogeneity from human liver using ammonium sulfate fractionation followed by DEAE-Sephadex A-50, hydroxyapatite, Matrex Gel Blue A, agarose-hexane-CoA, and Bio-Gel A-0.5 column chromatographies. The specific activities of the final preparations were enriched 507-, 750-, and 588-fold over those from the second ammonium sulfate fractionation step. The native molecular weights were estimated to be 168,000, 178,000, and 172,000, respectively, by gel filtration. Each of them exhibited, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, a single protein band with molecular weights of 41,000, 44,000, and 42,000, respectively, indicating a homotetrameric structure. UV/visual spectra, fluorescence spectra, and other evidence indicated that each contains 1 mol of FAD per subunit. They all utilized electron transfer flavoprotein (ETF) or phenazine methosulfate (PMS) as an electron acceptor. The products of SCA dehydrogenase/butyryl-CoA, MCA dehydrogenase/octanoyl-CoA, and IV dehydrogenase/isovaleryl-CoA reactions were identified as crotonyl-CoA, 2-octenoyl-CoA, and 3-methylcrotonyl-CoA, respectively, using gas chromatography. Kinetic parameters Vappmax and Kappm) of these enzymes for various acyl-CoA substrates, as well as Kappm values for ETF and PMS are presented. In general, the substrate specificities of human SCA, MCA, and IV dehydrogenases are slightly less stringent than those of their rat counterparts and resemble those of their bovine and porcine counterparts. The pattern of substrate specificity for these enzymes determined using ETF as electron acceptor significantly differed from that determined using PMS. All of them were severely inhibited by (methylenecyclopropyl)acetyl-CoA.  相似文献   

11.
The heart utilizes primarily fatty acids for energy production. During ischemia, however, diminished oxygen supply necessitates a switch from beta-oxidation of fatty acids to glucose utilization and glycolysis. Molecular mechanisms responsible for these alterations in metabolism are not fully understood. Mitochondrial acyl-CoA dehydrogenase catalyzes the first committed step in the beta-oxidation of fatty acids. In the current study, an in vivo rat model of myocardial ischemia was utilized to determine whether specific acyl-CoA dehydrogenases exhibit ischemia-induced alterations in activity, identify mechanisms responsible for changes in enzyme function, and assess the effects on mitochondrial respiration. Very long chain acyl-CoA dehydrogenase (VLCAD) activity declined 34% during 30 min of ischemia. Loss in activity appeared specific to VLCAD as medium chain acyl-CoA dehydrogenase activity remained constant. Loss in VLCAD activity during ischemia was not due to loss in protein content. In addition, activity was restored in the presence of the detergent Triton X-100, suggesting that changes in the interaction between the protein and inner mitochondrial membrane are responsible for ischemia-induced loss in activity. Palmitoyl-carnitine supported ADP-dependent state 3 respiration declined as a result of ischemia. When octanoyl-carnitine was utilized state 3 respiration remained unchanged. State 4 respiration increased during ischemia, an increase that appears specific to fatty acid utilization. Thus, VLCAD represents a likely site for the modulation of substrate utilization during myocardial ischemia. However, the dramatic increase in mitochondrial state 4 respiration would be predicted to accentuate the imbalance between energy production and utilization.  相似文献   

12.
13.
14.
Peterson KM  Srivastava DK 《Biochemistry》2000,39(41):12678-12687
The substitution of the C=O by the C=S group in 2-azaoctanoyl-CoA increases the volume of the ligand by 11 A(3), and the excision of a methylene group from Glu-376, via Glu-376 --> Asp (E376D) mutation in medium chain acyl-CoA dehydrogenase (MCAD), creates a complementary cavity of 18 A(3) dimension, just opposite to the ligand's carbonyl group. We investigated whether the newly created cavity would facilitate accommodation of the bulkier (C=O --> C=S substituted) ligand within the active site of the enzyme. To ascertain this, we determined the binding affinity and kinetics of association and dissociation of 2-azaoctanoyl-CoA and the C=O --> C=S substituted ligand, 2-azadithiooctanoyl-CoA, involving the wild-type and Glu-376 --> Asp mutant enzymes. The experimental data revealed that the binding of 2-azadithiooctanoyl-CoA to the wild-type enzyme was energetically unfavorable as compared to 2-azaoctanoyl-CoA. However, such an energetic constraint was alleviated for the binding of the former ligand to the E376D mutant enzyme site. A detailed account of the free energy and enthalpic profiles for the binding of 2-azaoctanoyl-CoA and 2-azadithiooctanoyl-CoA to the wild-type and Glu-376 --> Asp mutant enzymes throws light on the flexibility of the enzyme site cavity in stabilizing the ground and transition states of the enzyme-ligand complexes.  相似文献   

15.
The cDNA of human medium chain acyl-CoA dehydrogenase (MCADH) was modified by in vitro mutagenesis, and the sequence encoding the mature form of MCADH was introduced into an inducible expression plasmid. We observed synthesis of the protein in Escherichia coli cells transformed with this plasmid with measurable MCADH enzyme activity in cell extracts. Glutamic acid 376, which has been proposed by Powell and Thorpe (Powell, P. J., and Thorpe, J. (1988) Biochemistry 27, 8022-8028) as an essential residue and the proton-abstracting base at the active site of the enzyme, was mutated to glutamine. After expression in bacteria of this plasmid, the corresponding extracts show no detectable MCADH activity, although mutant MCADH-protein production was detected by protein immunoblots. The mature enzyme and the Gln376 mutant were purified to apparent homogeneity. The wild-type enzyme is a yellow protein due to the content of stoichiometric FAD and had a specific activity which is 50% of MCADH purified from pig kidney. The Gln376 mutant is devoid of activity (less than 0.02% that of wild type, expressed enzyme) and is green because of bound CoA persulfide. Properties of the mutant enzyme suggest that the Glu376----Gln change specifically affects substrate binding. These results prove that Glu376 plays an important role in the initial step of dehydrogenation catalysis.  相似文献   

16.
We previously reported that the kinetic profiles for the association and dissociation of functionally diverse C(8)-CoA-ligands, viz., octanoyl-CoA (substrate), octenoyl-CoA (product), and octynoyl-CoA (inactivator) with medium chain acyl-CoA dehydrogenase (MCAD), were essentially identical, suggesting that the protein conformational changes played an essential role during ligand binding and/or catalysis [Peterson, K. L., Sergienko, E. E., Wu, Y., Kumar, N. R., Strauss, A. W., Oleson, A. E., Muhonen, W. W., Shabb, J. B., and Srivastava, D. K. (1995) Biochemisry 34, 14942-14953]. To ascertain the structural basis of the above similarity, we investigated the kinetics of association and dissociation of alpha-CH-->NH-substituted C(8)-CoA, namely, 2-azaoctanoyl-CoA, with the recombinant form of human liver MCAD. The rapid-scanning and single wavelength stopped-flow data for the binding of 2-azaoctanoyl-CoA to MCAD revealed that the overall interaction proceeds via two steps. The first (fast) step involves the formation of an enzyme-ligand collision complex (with a dissociation constant of K(c)), followed by a slow isomerization step (with forward and reverse rate constants of k(f) and k(r), respectively) with concomitant changes in the electronic structure of the enzyme-bound FAD. Since the latter step involves a concurrent change in the enzyme's tryptophan fluorescence, it is suggested that the isomerization step is coupled to the changes in the protein conformation. Although the overall binding affinity (K(d)) of the enzyme-2-azaoctanoyl-CoA complex is similar to that of the enzyme-octenoyl-CoA complex, their microscopic equilibria within the collision and isomerized complexes show an opposite relationship. These results coupled with the isothermal titration microcalorimetric studies lead to the suggestion that the electrostatic interaction within the enzyme site phase modulates the microscopic steps, as well as their corresponding ground and transition states, during the course of the enzyme-ligand interaction.  相似文献   

17.
18.
Very-long-chain acyl-CoA dehydrogenase (VLCAD) is a member of the family of acyl-CoA dehydrogenases (ACADs). Unlike the other ACADs, which are soluble homotetramers, VLCAD is a homodimer associated with the mitochondrial membrane. VLCAD also possesses an additional 180 residues in the C terminus that are not present in the other ACADs. We have determined the crystal structure of VLCAD complexed with myristoyl-CoA, obtained by co-crystallization, to 1.91-A resolution. The overall fold of the N-terminal approximately 400 residues of VLCAD is similar to that of the soluble ACADs including medium-chain acyl-CoA dehydrogenase (MCAD). The novel C-terminal domain forms an alpha-helical bundle that is positioned perpendicular to the two N-terminal helical domains. The fatty acyl moiety of the bound substrate/product is deeply imbedded inside the protein; however, the adenosine pyrophosphate portion of the C14-CoA ligand is disordered because of partial hydrolysis of the thioester bond and high mobility of the CoA moiety. The location of Glu-422 with respect to the C2-C3 of the bound ligand and FAD confirms Glu-422 to be the catalytic base. In MCAD, Gln-95 and Glu-99 form the base of the substrate binding cavity. In VLCAD, these residues are glycines (Gly-175 and Gly-178), allowing the binding channel to extend for an additional 12A and permitting substrate acyl chain lengths as long as 24 carbons to bind. VLCAD deficiency is among the more common defects of mitochondrial beta-oxidation and, if left undiagnosed, can be fatal. This structure allows us to gain insight into how a variant VLCAD genotype results in a clinical phenotype.  相似文献   

19.
The free radical EPR signals of ubisemiquinone in mitochondria and submitochondrial particles (SMP) were investigated. One of the signals observed under the conditions of the respiratory chain highly oxidized and characterized by an unusually short time of the spin-lattice relaxation has previously been termed as SQ-2. The intensity of SQ-2 in SMP strongly depends on pH, the maximal concentration of QH. is reached at about 8.5. The signal is absent in the succinate dehydrogenase-depleted SMP and is highly sensitive to specific inhibitors of succinate: CoQ-oxidoreductase, such as alpha-thenoyltrifluoroacetone and carboxin. In SMP SQ-2 disappears in the presence of low concentrations of ferricyanide, while in mitochondria this non-penetrating oxidant provokes the appearance of SQ-2. The data obtained suggest that SQ-2 belongs to a stable ubisemiquinone which forms a complex with a FeS center of succinate dehydrogenase, is localized at the M-side of the membrane, and is kinetically isolated from the cytochrome chain. Oxidation of the terminal segment of the respiratory chain of mitochondria and SMP reduced by succinate in the presence of antimycin, is in some cases accompanied by an appearance of a strong free radical EPR signal which is stable at 77K but disappears rapidly in the frozen samples at -30- -40 degrees C. It is suggested that the signal is generated by an antimycin-insensitive oxidation of QH2 to QH. via the branch of the respiratory chain comprised of the Rieske FeS-protein and cytochrome c1. The mechanisms of how the two-electron oxidation-reduction of CoQ is coupled with the one-electron transfer through the cytochromes and FeS centers in the respiratory chain are discussed.  相似文献   

20.
Short-chain acyl-CoA dehydrogenase (SCAD) is a mitochondrial enzyme involved in the β-oxidation of fatty acids. Genetic defect of SCAD was documented to cause clinical symptoms such as progressive psychomotor retardation, muscle hypotonia, and myopathy in early reports. However, clinical significance of SCAD deficiency (SCADD) has been getting ambiguous, for some variants in the ACADS gene, which encodes the SCAD protein, has turned out to be widely prevailed among general populations. Accordingly, the pathophysiology of SCADD has not been clarified thus far. The present report focuses on two suspected cases of SCADD detected through the screening of newborns by tandem mass spectrometry. In both subjects, compound heterozygous mutations in ACADS were detected. The mutated genes were expressed in a transient gene expression system, and the enzymatic activities of the obtained mutant SCAD proteins were measured. The activities of the mutant SCAD proteins were significantly lower than that of the wild-type enzyme, confirming the mechanism underlying the diagnosis of SCADD in both subjects. Moreover, the mutant SCAD proteins gave rise to mitochondrial fragmentation and autophagy, both of which were proportional to the decrease in SCAD activities. The association of autophagy with programed cell death suggests that the mutant SCAD proteins are toxic to mitochondria and to the cells in which they are expressed. The expression of recombinant ACADS-encoded mutant proteins offers a technique to evaluate both the nature of the defective SCAD proteins and their toxicity. Moreover, our results provide insight into possible molecular pathophysiology of SCADD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号