首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation.
  • We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole‐plant photosynthesis, and ultimately in aboveground biomass.
  • Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole‐plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant‐level C gain, and ultimately to larger aboveground biomass.
  • In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf‐level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
  相似文献   

2.

Key message

This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication.

Abstract

The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today’s crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
  相似文献   

3.
植物与共存微生物的相互作用对植物的生长、发育、健康等具有重大影响。人类驯化导致现代作物品种与其野生祖先在生理遗传特性、生长环境等方面存在明显差异, 这必然会影响作物与其微生物组的相互作用。理解驯化对作物微生物组的影响及其作用机理, 是充分应用微生物组进行作物改良或人工育种的重要理论基础。结合课题组前期研究基础, 该文综述了驯化对作物地下和地上部分细菌和真菌(尤其是益生菌和病原菌)群落组成和多样性影响的研究现状; 并结合驯化对作物植株形态、根系构型、根系分泌物等生理特征以及生长环境的影响, 分析了驯化塑造作物微生物组的作用途径, 提出了该领域值得重点关注的研究和发展方向。  相似文献   

4.
The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific noncrop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived single nucleotide polymorphisms for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that noncrop samples from the Caucasus, Siberia, and Italy may be truly wild, whereas those occurring in the Americas and much of Europe are feral. Clustering, tree-based analyses, and parameterized demographic inference further indicate that turnips were likely the first crop type domesticated, from which leafy types in East Asia and Europe were selected from distinct lineages. These findings clarify the domestication history and nature of wild crop genetic resources for B. rapa, which provides the first step toward investigating cases of possible parallel selection, the domestication and feralization syndrome, and novel germplasm for Brassica crop improvement.  相似文献   

5.
Polyploidy and domestication are common features of plant evolution. A number of selective advantages conferred by polyploidy appear relevant to domestication. Surprisingly, the correlation between the two has not previously been examined. Anderson (Plants, man and life. University of California Press, Berkeley, CA, 1969) asserted that we do not yet know exactly what percentage of cultivated plants and weeds are polyploid, but it must be high. Heiser (Seeds to civilization, the story of food, 2d ed., W. H. Freeman, San Francisco, CA, 1981) stated that a large number of the major food crops are polyploids, giving wheat, sugar cane, potatoes, sweet potatoes, and bananas as examples. In this study, the distribution of polyploidy in 244 crop species was compared to the estimates of polyploidy in their respective higher categories. The proportion of polyploidy in crop plants was considered in relation to taxonomic origin, habitat, and reproductive strategies of the crops. The study showed that the crop species were a random selection as far as ploidy level is concerned and that domestication did not appear to have favored polyploid over diploid genomes or vice versa. Vegetative, seed, and tree crops were statistically homogenous in their polyploid composition. The distribution of polyploidy in annual and perennial crops did not differ statistically. The data imply that polyploid genomic constitution neither facilitated nor hindered the ability of wild species for domestication.  相似文献   

6.
Domesticated plants have been transported around the globe through their association with humans and have undergone changes in response to their new environments. In many regions, farmers and, later, plant breeders have developed local landraces to deal with the new conditions or to satisfy the culinary needs of consumers, showing the versatility of these plants and the ingenuity of plant breeders, both ancient and modern. However, in some cases, plants leave behind their human associations and become feral in either the crop fields or natural landscape of the new region. The evolution of ferality has been studied in some crop systems, with many advances made in our understanding of annual crop ferality (e.g., Burger, Lee, & Ellstrand, 2006; Hegde et al., 2006). In contrast, very little is known about the genetics of feral perennial crops, and the study by Cronin, Kron, and Husband (2020) in this issue of Molecular Ecology sheds new light on this type of evolution, revealing the remarkable ability of domesticated apple (Malus domestica) to thrive and reproduce in North America without genetic input from local species.  相似文献   

7.
Summary Branch sampling of branch diameter and fruit crop on 22 species of Barbadian trees and shrubs provided sufficient data to build regressions between plant size and fruit crop weight. Orchard plants bear much more fruit than wild, feral or garden plants of similar size, but this difference disappears in multiple regression of fruit crop weight (F in g, fresh mass) on branch or stem diameter (D in cm) and individual fruit weight (W in g): F=22D1.2 W0.57. This explains 89% of the variation in F and successfully predicts crop weight for wild tropical and temperate trees and shrubs, but underestimated the crops on commercial, temperate, fruit trees by an order of magnitude. Comparisons of crop weight for feral, wild, and garden plants (Ff) using a simple regression Ff=47D1.9 show that crop weight is a minor load relative to branch weight for larger branches. Although fruit crops represent a declining proportion of total plant weight as plants become larger, the crops become larger relative to leaf and twig weight and in this sense, reproductive investment increases in larger plants. Finally, our equations, combined with the self-thinning rule, suggest that stands of large species of fruit plants produce more fruit per unit of land area than stands of small ones.  相似文献   

8.

Background

Recently, many studies utilizing next generation sequencing have investigated plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has ornamental and edible varieties. Unlike other fruit crops, cultivated peach includes a large number of phenotypes but few polymorphisms. In this study, we explore the genetic basis of domestication in peach and the influence of humans on its evolution.

Results

We perform large-scale resequencing of 10 wild and 74 cultivated peach varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify 4.6 million SNPs, a large number of which could explain the phenotypic variation in cultivated peach. Population analysis shows a single domestication event, the speciation of P. persica from wild peach. Ornamental and edible peach both belong to P. persica, along with another geographically separated subgroup, Prunus ferganensis.We identify 147 and 262 genes under edible and ornamental selection, respectively. Some of these genes are associated with important biological features. We perform a population heterozygosity analysis in different plants that indicates that free recombination effects could affect domestication history. By applying artificial selection during the domestication of the peach and facilitating its asexual propagation, humans have caused a sharp decline of the heterozygote ratio of SNPs.

Conclusions

Our analyses enhance our knowledge of the domestication history of perennial fruit crops, and the dataset we generated could be useful for future research on comparative population genomics.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0415-1) contains supplementary material, which is available to authorized users.  相似文献   

9.
Knowledge of the origin and domestication history of crop plants is important for studies aiming at avoiding the erosion of genetic resources due to the loss of ecotypes and landraces and habitats and increased urbanization. Such knowledge also strengthens the capacity of modern farming system to develop and scale-up the domestication of high value potential crops that can be achieved by improving the knowledge that help to identify and select high value plant species within their locality, identify and apply the most appropriate propagation techniques for improving crops and integrate improved crop species into the farming systems. The study of domestication history and ancestry provide means for germplasm preservation through establishment of gene banks, largely as seed collections, and preservation of natural habitats. Information about crop evolution and specifically on patterns of genetic change generated by evolution prior, during, and after domestication, is important to develop sound genetic conservation programs of genetic resources of crop plants and also increases the efficiency of breeding programs. In recent years, molecular approaches have contributed to our understanding of the aspects of plant evolution and crops domestication. In this article, aspects of crops domestication are outlined and the role of molecular data in elucidating the ancestry and domestication of crop plants are outlined. Particular emphasis is given to the contribution of molecular approaches to the origin and domestication history of barley and the origin and ancestry of the Egyptian clover.  相似文献   

10.

Key message

The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed.

Abstract

Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.  相似文献   

11.
Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a “wild” reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops.  相似文献   

12.
Reconstructing the evolutionary history of crop plants is fundamental for understanding their adaptation profile and the genetic basis of yield-limiting factors, which in turn are critical for future crop improvement. A major topic in this field is the recent claim for a millennia-long ‘protracted’ domestication process. Here we evaluate the evidence for the protracted domestication model in light of published archaeobotanical data, experimental evidence and the biology of the Near Eastern crops and their wild progenitors. The crux of our discussion is the differentiation between events or ‘domestication episodes’ and the later following crop evolutionary processes under domestication (frequently termed ‘crop improvement stage’), which are by definition, still ongoing. We argue that by assuming a protracted millennia-long domestication process, one needlessly opts to operate within an intellectual framework that does not allow differentiating between the decisive (critical) domestication traits and their respective loci, and those that have evolved later during the crop dissemination and improvement following the episodic domestication event. Therefore, in our view, apart from the lack of experimental evidence to support it, the protracted domestication assumption undermines the resolution power of the study of both plant domestication and crop evolution, from the cultural as well as from the biological perspectives.  相似文献   

13.
Understanding the evolutionary history of crop plants is fundamental to our understanding of their respective adaptation profiles, which in turn, is a key element in securing future yield and quality improvement. Central topics in this field concern the mono- or polyphyletic origin of crop plants, and our ability to identify the geographic location where certain crop plants have originated. Understanding the geographical pattern of domestication may also assist in reconstructing the cultural processes underlying the Neolithic (agricultural) Revolution. Here we review prevailing views on the geographic pattern of Near Eastern plant domestication, and highlight the distinction between genetic domestication events and independent cultural events. A critical evaluation of the wealth of newly published geobotanical, genetic, and archaeological data provides strong support in favor of a specific core area in southeastern Turkey where most, if not all, founder Near Eastern crops were likely domesticated.  相似文献   

14.
  • Reproductive isolation is a necessary condition for plant domestication in their domestication centre where crops co‐occur with their wild progenitors. However, the identification of reproductive barriers and their relative contribution to reproductive isolation have been overlooked in plants under domestication.
  • We assessed pre‐ and post‐pollination reproductive barriers and their relative contribution to reproductive isolation between wild and domesticated chaya (Cnidoscolus aconitifolius) in its domestication centre.
  • We found that wild and domesticated chaya both exhibit a high degree of reproductive isolation. However, the reproductive isolation barriers exhibited some asymmetry: while pre‐pollination barriers (differential pollen production and pollinator specificity) were only detected in wild plants, post‐pollination barriers (pollen–pistil incompatibility and/or failure to set fruit) were observed in both wild and domesticated plants.
  • We conclude that complete reproductive isolation has evolved in sympatry in co‐occurring domesticated and wild chaya.
  相似文献   

15.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

16.
Two types of selection operate (and complement each other) in plants under domestication: (a) conscious or intentional selection applied by the growers for traits of interest to them; (b) unconscious or automatic selection brought about by the fact that the plants concerned were taken from their original wild habitats and placed in new (and usually very different) human-made or human-managed environments. The shift in the ecology led automatically to drastic changes in selection pressures. Numerous adaptations vital for survival in the wild environments lost their fitness under the new sets of conditions. New traits were automatically selected, resulting in the build-up of characteristic “domestication syndromes,” each fitting the specific agricultural environment provided by the farmer. The present paper assesses the evolutionary consequences of the introduction of the wild plants into several sets of contrasting farming situations. These include: (a) the type of maintenance applied, whether seed planting or vegetative propagation; (b) the plant organs for which the crop has been grown, whether they are reproductive parts or vegetative parts; (c) the impact of the system of tilling, sowing, and reaping on the evolution of grain crops; (d) the impact of the horticultural environment on fruit crops.  相似文献   

17.
It has been hypothesized that reproductive isolation should facilitate evolution under domestication. However, a systematic comparison of reproductive barrier strength between crops and their progenitors has not been conducted to test this hypothesis. Here, we present a systematic survey of reproductive barriers between 32 economically important crop species and their progenitors to better understand the role of reproductive isolation during the domestication process. We took a conservative approach, avoiding those types of reproductive isolation that are poorly known for these taxa (e.g., differences in flowering time). We show that the majority of crops surveyed are isolated from their progenitors by one or more reproductive barriers, despite the fact that the most important reproductive barrier in natural systems, geographical isolation, was absent, at least in the initial stages of domestication for most species. Thus, barriers to reproduction between crops and wild relatives are closely associated with domestication and may facilitate it, thereby raising the question whether reproductive isolation could be viewed as a long-overlooked "domestication trait." Some of the reproductive barriers observed (e.g., polyploidy and uniparental reproduction), however, may have been favored for reasons other than, or in addition to, their effects on gene flow.  相似文献   

18.
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant–plant interactions. We tested whether domestication has changed the potential of crop mixtures to over‐yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within‐mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over‐yield and the potential of breeding to re‐establish variance and increase mixture performance.  相似文献   

19.
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock’s molecular functioning can facilitate molecular breeding in the future.

Crop genes that have been implicated in the modulation of photoperiodic flowering time and adaptation include orthologs of Arabidopsis core clock genes.  相似文献   

20.
《Trends in plant science》2023,28(5):597-608
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号