首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
神经干细胞克隆球中干细胞的比例变化   总被引:3,自引:0,他引:3  
为了定量研究神经干细胞体外产生的克隆结构“neurospheres”中干细胞的比例变化,利用无血清培养、细胞克隆培养技术及免疫细胞化学染色方法,观察不同代数神经干细胞克隆球中nestin阳性细胞的比例。发现随着传代次数增加,克隆球中nestin阳性细胞的比例也在显著减少(P<0.001)。提示在体外培养体系中,形成的克隆球具有异质性,并且在不同代数间神经干细胞的比例也显著不同。  相似文献   

2.
目的 研究神经球在形成过程中是否能结合异种细胞,并与之形成杂合细胞球.方法 分别用绿色荧光蛋白(EGFP)标记的神经球来源细胞、大鼠神经胶质瘤细胞C6、HER293细胞,同正在形成中的神经球共培养,检测异种细胞是否能与神经球形成杂合细胞球.结果 神经球在形成过程中,能与异种细胞形成杂合细胞球,杂合细胞不改变原神经球细胞的特性,且杂合细胞球的形成能促进杂合细胞的增殖. 结论 神经球能与异种细胞形成杂合细胞球,并能为细胞生长分裂提供特殊的微环境,这为神经球微环境的研究提供实验依据.  相似文献   

3.
体外神经干细胞克隆球的超微结构-透射电镜观察   总被引:5,自引:0,他引:5  
许汉鹏  卢春蓉  苟琳  鞠躬 《细胞生物学杂志》2002,24(4):251-254,T004
为观察培养的神经干细胞克隆球内部的超微结构特征,采用无血清培养技术,在体外进行小鼠纹状体神经干细胞克隆球的培养传代,经过免疫细胞化学鉴定后,对单一的神经干细胞克隆球进行固定,常规透射电镜观察。结果表明,神经干细胞可以在bFGF等生长因子存在的情况下,在无血清培养液内增殖生成悬浮状态的神经干细胞克隆球,这种克隆可被诱导生成神经细胞和神经胶质细胞,电镜下,神经干细胞克隆球内部细胞相互间可形成特化的膜性结构,细胞内可有小泡出现,部分细胞有凋亡的形态。  相似文献   

4.
神经球是神经干细胞在体外扩增培养过程中的一般表现形式。目前,神经球方法(neurosphere assay,NSA)已在神经干细胞性质、神经发育模型研究和作为分子载体用于神经系统疾病治疗等方面得到了广泛应用,但因神经球固有的异质性、自发融合等特性限制了其应用。本文就神经球方法在神经生物学研究中的应用及其局限性做一综述。  相似文献   

5.
重组腺相关病毒转染神经干细胞球的实验研究   总被引:5,自引:0,他引:5  
目的:探讨重组腺相关病毒2型(rAAV2)对神经干细胞球的转染能力.方法:①将FITC标记的rAAV2(FITC-rAAV2)分成两组,A组直接与神经干细胞球混合,B组与肝素混匀后再与神经干细胞球混合,孵育30 min后在荧光显微镜下观察;②含有GFP报告基因的rAAV2(rAAV2-GFP)与神经干细胞球孵育30 min后,分成两组:A组继续在培养箱内培养,B组分散成单细胞后移植到大鼠脑内,一个月后分别在荧光显微镜下观察神经干细胞球和大鼠脑组织切片中报告基因的表达情况;③将含有低氧启动子(低氧应答元件,HRE)、VEGF和GFP的rAAV2(rAAV2-HRE-VEGF-GFP)转染神经干细胞球后分为两组:A组在低氧条件下培养,B组在常规条件下培养,72 h后观察报告基因的表达情况.结果:①FITC-rAAV2转染神经干细胞球的结果:A组有明亮的绿色荧光,B组基本无绿色荧光;②rAAV2-GFP转染神经干细胞球后一个月,A、B两组均可以看到绿色荧光;③rAAV2-HRE-VEGF-GFP转染神经干细胞球后72 h,A组可见绿色荧光,B组无绿色荧光.结论:rAAV2可以与神经干细胞球特异性结合,rAAV2携带的外源基因在体内和体外均可以有效表达,rAAV2携带外源基因的表达可以人为调控.  相似文献   

6.
大鼠胚胎神经干细胞单克隆化及单层化培养和鉴定   总被引:3,自引:0,他引:3  
采用原代培养SD胎鼠神经干细胞,在形成神经球之后,传代至0.1%明胶包被的培养皿,显微镜下挑取一个神经球贴壁后的细胞团,吹打后贴壁培养.同样方法挑细胞团并传代培养5~6次,得到纯化的由一个神经干细胞扩增的克隆,对得到的神经干细胞进行鉴定以及分化能力的评估,证明得到的细胞就是神经干细胞.结果表明,成功分离了SD胎鼠的神经干细胞,进行单克隆化单层培养,神经干细胞和分化后的细胞标志基因都可以检测到.上述工作为疾病模型大鼠治疗及相关基础研究提供细胞来源及形态标准.  相似文献   

7.
人类胚胎干细胞体外诱导分化为神经干细胞   总被引:2,自引:1,他引:1  
人类胚胎干细胞是替代治疗充满希望的细胞来源. 描述了从人胚胎干细胞诱导分化出神经干细胞的方法. 将人胚胎干细胞系PKU1, PKU2在细菌培养皿中悬浮培养, 分化形成囊性拟胚体. 拟胚体接种至组织培养皿, 加入N2培养液和生长因子bFGF培养2周, 拟胚体贴壁、展开,中心出现灶状增生, 有突起的小细胞. 用机械方法取下此种细胞, 重新接种, 则细胞团悬浮生长,形成神经球. 培养10天后, 将神经球打散成单细胞接种, 该细胞贴壁生长旺盛. 免疫荧光检测显示为几乎100% 纯净的nestin阳性细胞. 将培养液中的生长因子撤除, 继续培养7~10天, 细胞分化为神经元, 该细胞呈现β-tubulin isotype 阳性、GABA阳性、serotonin阳性、synaptophysin阳性. 在生长因子PDGF-AA诱导下, 细胞分化为星形胶质细胞, 其GFAP阳性; 或少突胶质细胞, 其O4阳性. 可见, 人类胚胎干细胞经上述方法培养可分化为典型神经干细胞, 表达神经干细胞特异的标志分子nestin、能自我更新、具有分化为神经系统三类主要细胞的能力.  相似文献   

8.
在成体的许多组织中发现了多能干细胞,这些干细胞可以进行自我复制,参与组织的正常修复。神经干细胞在体外能分化为神经元、星形胶质细胞和少突胶质细胞,并具有多向分化潜能。成体神经干细胞和胚胎干细胞都能分化成成体神经系统中的各种神经细胞。神经干细胞具有自我更新能力,因此神经干细胞可以应用于神经损伤或者神经疾病的修复。本文概述了神经干细胞体外分离培养的方法及其生长影响因子。  相似文献   

9.
神经上皮干细胞的分离培养及其体外分化特性的观察   总被引:1,自引:1,他引:0  
目的探讨大鼠胚胎神经管神经上皮干细胞的分离培养条件,并观察其在体外的分化特性.方法采用显微解剖、机械吹打、无血清悬浮培养方法分离培养神经上皮干细胞,采用巢蛋白(nestin)免疫细胞化学染色技术检测神经上皮干细胞,用NSE和GFAP免疫组化染色检测并计数神经细胞和神经胶质细胞.结果大鼠胚胎神经管神经上皮干细胞在无血清培养基中可形成大量呈nestin抗原阳性细胞构成的神经球,经传代有血清培养后分化为NSE阳性和GFAP阳性细胞,其中NSE阳性细胞占细胞总数的47.7%,GFAP阳性细胞占细胞总数的39.8%.结论胎鼠神经管神经上皮干细胞在无血清培养中可增殖和传代,在有血清培养中可分化为神经细胞和神经胶质细胞,两者之比为47.7∶39.8.  相似文献   

10.
人胎儿脊髓神经干细胞的分离培养   总被引:6,自引:0,他引:6  
Liu XC  Zhu Y 《生理学报》2006,58(4):384-390
本文旨在探讨是否能够从低温保存的流产儿分离培养出脊髓神经干细胞。将14周流产儿在4℃下保存,2、6和12h后取脊髓,将颈段、胸段、腰骶段分别进行无血清培养,并用胎牛血清诱导分化。用克隆培养的方法验证培养细胞的干细胞特性;用免疫荧光细胞化学的方法检测神经干细胞标志nestin及干细胞诱导分化后神经元标志MAP2、星形胶质细胞标志GFAP、胆碱能标志ChAT,并比较不同时间点以及不同部位分离的神经T细胞的差异。在各个时间点,从颈段、胸段、腰骶段脊髓均分离培养出具有连续增殖能力的神经球,其中腰骶段分离出的神经球数量最多,12h组各段分离出的神经球较2、6h组显著减少。各段培养中的神经球均为nestin阳性,诱导分化后均能够产生GFAP阳性星形胶质细胞、MAP2阳性神经元以及ChAT阳性胆碱能神经元。各段培养中的神经干细胞的克隆形成能力相似。以上结果表明,从低温保存的人胎儿能够分离培养出脊髓神经干细胞,这为基础研究以及未来治疗应用提供了新的细胞来源。  相似文献   

11.
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level.  相似文献   

12.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

13.
In mammalians, stem cells acts as a source of undifferentiated cells to maintain cell genesis and renewal in different tissues and organs during the life span of the animal. They can potentially replace cells that are lost in the aging process or in the process of injury and disease. The existence of neural stem cells (NSCs) was first described by Reynolds and Weiss (1992) in the adult mammalian central nervous system (CNS) using a novel serum‐free culture system, the neurosphere assay (NSA). Using this assay, it is also feasible to isolate and expand NSCs from different regions of the embryonic CNS. These in vitro expanded NSCs are multipotent and can give rise to the three major cell types of the CNS. While the NSA seems relatively simple to perform, attention to the procedures demonstrated here is required in order to achieve reliable and consistent results. This video practically demonstrates NSA to generate and expand NSCs from embryonic day 14-mouse brain tissue and provides technical details so one can achieve reproducible neurosphere cultures. The procedure includes harvesting E14 mouse embryos, brain microdissection to harvest the ganglionic eminences, dissociation of the harvested tissue in NSC medium to gain a single cell suspension, and finally plating cells in NSA culture. After 5-7 days in culture, the resulting primary neurospheres are passaged to further expand the number of the NSCs for future experiments.Download video file.(69M, mov)  相似文献   

14.
15.
Isolation and expansion of the putative neural stem cells (NSCs) from the adult murine brain was first described by Reynolds and Weiss in 1992 employing a chemically defined serum-free culture system known as the neurosphere assay (NSA). In this assay, the majority of differentiated cell types die within a few days of culture but a small population of growth factor responsive precursor cells undergo active proliferation in the presence of epidermal growth factor (EGF) and/ basic fibroblastic growth factor (bFGF). These cells form colonies of undifferentiated cells called neurospheres, which in turn can be subcultured to expand the pool of neural stem cells. Moreover, the cells can be induced to differentiate, generating the three major cell types of the CNS i.e. neurons, astrocytes, and oligodendrocytes. This assay provides an invaluable tool to supply a consistent, renewable source of undifferentiated CNS precursors, which could be used for in vitro studies and also for therapeutic purposes.This video demonstrates the NSA method to generate and expand NSCs from the adult mouse periventricular region, and provides technical insights to ensure one can achieve reproducible neurosphere cultures. The procedure includes harvesting the brain from the adult mouse, micro-dissection of the periventricular region, tissue preparation and culture in the NSA. The harvested tissue is first chemically digested using trypsin-EDTA and then mechanically dissociated in NSC medium to achieve a single cell suspension and finally plated in the NSA. After 7-10 days in culture, the resulting primary neurospheres are ready for subculture to reach the amount of cells required for future experiments.Download video file.(159M, mp4)  相似文献   

16.
17.
Increasing evidence suggests that alterations in epigenetic mechanisms regulating chromatin state play a role in the pathogenesis of medulloblastoma (MB), the most common malignant brain tumor of childhood. Histone deacetylase (HDAC) inhibitors, which increase chromatin relaxation, have been shown to display anticancer activities. Here we show that the HDAC inhibitor sodium butyrate (NaB) markedly increases cell death and reduces colony formation in human MB cell lines. In addition, NaB increased the mRNA expression of Gria2, a neuronal differentiation marker, in D283 and DAOY cells and reduced the number of neurospheres in D283 cell cultures. Finally, NaB reduced the viability of D283 cells when combined with etoposide. These data show that NaB displays pronounced inhibitory effects on the survival of human MB cells and suggest that NaB might potentiate the effects of etoposide. In addition, our study suggests that HDAC inhibition might promote the neuronal differentiation of MB cells and provides the first evidence that an HDAC inhibitor might suppress the expansion or survival of MB cancer stem cells.  相似文献   

18.
Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.  相似文献   

19.
Retinoic acid (RA) is an important developmental morphogen that coordinates anteroposterior and dorsoventral axis patterning, somitic differentiation, neurogenesis, patterning of the hindbrain and spinal cord, and the development of multiple organ systems. Due to its chemical nature as a small amphipathic lipid, direct detection and visualization of RA histologically remains technically impossible. Currently, methods used to infer the presence and localization of RA make use of reporter systems that detect the biological activity of RA. Most established reporter systems, both transgenic mice and cell lines, make use of the highly potent RA response element (RARE) upstream of the RAR-beta gene to drive RA-inducible expression of reporter genes, such as beta-galactosidase or luciferase. The transgenic RARE-LacZ mouse is useful in visualizing spatiotemporal changes in RA signaling especially during embryonic development. However, it does not directly measure overall RA levels. As a reporter system, the F9 RARE-LacZ cell line can be used in a variety of ways, from simple detection of RA to quantitative measurements of RA levels in tissue explants. Here we describe the quantitative determination of relative RA levels generated in embryos and neurosphere cultures using the F9 RARE-LacZ reporter cell line.  相似文献   

20.
In this report, the sulfated polysaccharide (SJP) from the body wall of the sea cucumber Stichopus japonicas was extracted and tested for its capacity to affect migration and differentiation of neural stem/progenitor cells. SJP is an intensely sulfated polysaccharide with a molecular weight of 1.79 × 105 Da that is capable of promoting neurosphere attachment and migration in a dose-dependent manner. Moreover, SJP effectively maintains cell viability even after being deprived of mitogens. Our current results demonstrate that neurosphere are differentiated into neuronal and glial cells when exposed to SJP. These effects were accompanied by an up-regulation of the adhesion molecule, N-cadherin. In addition, we observed that blocking of PI3K activity inhibited N-cadherin-mediated activity. This SJP-induced up-regulation of N-cadherin mediates neurosphere adhesion migration and differentiation via the PI3K/Akt signaling pathway. These results suggest that SJP could be used as a therapeutic agent to mobilize neuroblast migration under conditions of brain injury and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号