首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In order to reveal the neuroprotective effects of statins that could be of interest for the prevention and treatment of Alzheimer's disease (AD), we investigated the expression of nicotinic acetylcholine receptors (nAChRs) detected by RT-PCR, the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by colorimetric determination, and the levels of the alpha-form of secreted beta-amyloid precursor protein (alphaAPPs) by Western blotting in neuroblastoma (SH-SY5Y) cells exposed to lovastatin, atorvastatin, rosuvastatin and simvastatin, respectively. The results indicated that all statins studied, both lipophilic and hydrophilic, induced high expression of alpha7 nAChR, decreased cholinesterase activities, and increased alphaAPPs, which suggests that statins might play important neuroprotective roles in AD treatment.  相似文献   

2.
Many preclinical and clinical studies have implied a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). In this review we will discuss the movement of intracellular cholesterol and how normal distribution, transport, and export of cholesterol are vital for regulation of the AD related protein, Aβ. We focus on cholesterol distribution in the plasma membrane, transport through the endosomal/lysosomal system, control of cholesterol intracellular signaling at the endoplasmic reticulum and Golgi, the HMG-CoA reductase pathway and finally export of cholesterol from the cell.  相似文献   

3.
Transient transfection has not been a successful method to express the alpha7 nicotinic acetylcholine receptor such that these receptors are detected on the cell surface. This is not the case for all ligand-gated ion channels. Transient transfection with the 5-hydroxytryptamine type 3 subunit cDNA results in detectable surface receptor expression. Cell lines stably expressing the alpha7 nicotinic acetylcholine receptor produce detectable, albeit variable, levels of surface receptor expression. alpha7 nicotinic acetylcholine receptor surface expression is dependent, at least in part, on cell-specific factors. In addition to factors provided by the cells used for receptor expression, we hypothesize that the surface expression level in transfected cells is an intrinsic property of the receptor protein under study. Employing a set of alpha7-5-hydroxytryptamine type 3 chimeric receptor subunit cDNAs, we expressed these constructs in a transient transfection system and quantified surface receptor expression. We have identified amino acids that control receptor distribution between surface and intracellular pools; surface receptor expression can be manipulated without affecting the total number of receptors. These determinants function independently of the cell line used for expression and the transfection method employed. How these surface expression determinants in the alpha7 nicotinic acetylcholine receptor might influence synaptic efficacy is discussed.  相似文献   

4.
Familial Alzheimer's disease-associated mutations in presenilin 1 or 2 or amyloid precursor protein result in elevated beta-amyloid, beta-amyloid accumulation, and plaque formation in the brains of affected individuals. By crossing presenilin 1 transgenic mice carrying the A246E mutation with plaque-producing amyloid precursor protein K670N/M671L transgenic mice (Tg2576), we show that co-expression of both mutant transgenes results in acceleration of amyloid accumulation and associative learning deficits. At 5 months of age with no detectable plaque pathology, amyloid precursor protein transgenic animals are impaired in contextual fear learning following two pairings of conditioned and unconditioned stimuli but appear normal following a more robust five-pairing training. At 9 months of age when beta-amyloid deposition is evident, these mice are impaired following both two-pairing and five-pairing protocols. Mice carrying both transgenes are impaired in contextual fear conditioning at either age. All transgenic animal groups performed as well as controls in cued fear conditioning, indicating that the contextual fear learning deficits are hippocampus-specific. The associative learning impairments are coincident with elevated alpha 7 nicotinic acetylcholine receptor protein in the dentate gyrus. These findings provide two robust and rapid assays for beta-amyloid-associated effects that can be performed on young animals: impaired contextual fear learning and up-regulation of alpha 7 nicotinic receptors.  相似文献   

5.
Alzheimer's disease (AD) is characterized by accumulation of the neurotoxic peptide beta-amyloid, which is produced by proteolysis of amyloid precursor protein (APP). APP is a large membrane-bound copper-binding protein that is essential in maintaining synaptic function and may play a role in synaptogenesis. beta-Amyloid has been shown to contribute to the oxidative stress that accompanies AD. Later stages of AD are characterized by neuronal apoptosis. However, the biochemical function of APP and the mechanism of the toxicity of beta-amyloid are still unclear. In this study, we show that both beta-amyloid and APP can oxidize cholesterol to form 7beta-hydroxycholesterol, a proapoptotic oxysterol that was neurotoxic at nanomolar concentrations. 7beta-Hydroxycholesterol inhibited secretion of soluble APP from cultured rat hippocampal H19-7/IGF-IR neuronal cells and inhibited tumor necrosis factor-alpha-converting enzyme alpha-secretase activity but had no effect on beta-site APP-cleaving enzyme 1 activity. 7beta-Hydroxycholesterol was also a potent inhibitor of alpha-protein kinase C, with a K(i) of approximately 0.2 nm. The rate of reaction between cholesterol and beta-amyloid was comparable to the rates of cholesterol-metabolizing enzymes (k(cat) = 0.211 min(-)1). The rate of production of 7beta-hydroxycholesterol by APP was approximately 200 times lower than by beta-amyloid. Oxidation of cholesterol was accompanied by stoichiometric production of hydrogen peroxide and required divalent copper. The results suggest that a function of APP may be to produce low levels of 7-hydroxycholesterol. Higher levels produced by beta-amyloid could contribute to the oxidative stress and cell loss observed in Alzheimer's disease.  相似文献   

6.
目的:研究H102对APP695转基因模型小鼠脑内淀粉样蛋白和淀粉样蛋白前体蛋白表达的影响方法:9月龄转基因小鼠随机分为模型组和药物注射组,正常对照组采用月龄和性别与之相匹配的C57BL/6J小鼠。药物注射组给予侧脑室注射H102,每只每次3μl,连续10d;模型组和正常对照组给予等体积NS。应用免疫组织化学结合刚果红组织学染色,普通光学显微镜观察海马和颞叶皮层蛋白表达的变化。免疫印迹法检测小鼠大脑皮层APP蛋白的表达。结果:Aβ和APP免疫组化染色结果显示对照组海马CA1区神经元胞浆着色呈阴性或弱阳性,模型组较对照组阳性细胞增多,表达增强,胞浆着色明显加深。药物注射组同模型组相比,胞浆着色变淡,表达减弱。刚果红染色观察转基因小鼠模型组和H102注射组大脑颞叶皮层和海马的淀粉样斑块,可见H102注射组淀粉样斑块数较模型组明显减少。正常对照组未见阳性淀粉样斑块。免疫印迹检测显示模型组APP蛋白表达明显增加,给药组与模型组相比具有统计学意义。结论:APP695转基因小鼠大脑CA1区Aβ蛋白和APP蛋白表达增加,H102能够明显抑制该转基因小鼠Aβ蛋白和APP蛋白表达。  相似文献   

7.
The influence of beta-amyloid on cholinergic neurotransmission was studied by measuring alterations in nicotinic acetylcholine receptors (nAChRs) in autopsy brain tissue from subjects carrying the Swedish amyloid precursor protein (APP) 670/671 mutation. Significant reductions in numbers of nAChRs were observed in various cortical regions of the Swedish 670/671 APP mutation family subjects (-73 to -87%) as well as in sporadic Alzheimer's disease (AD) cases (-37 to -57%) using the nicotinic agonists [3H]epibatidine and [3H]nicotine, which bind with high affinity to both alpha3 and alpha4 and to alpha4 nAChR subtypes, respectively. Saturation binding studies with [3H]epibatidine revealed two binding sites in the parietal cortex of AD subjects and controls. A significant decrease in Bmax (-82%) for the high-affinity site was observed in APP 670/671 subjects with no change in K(D) compared with controls (0.018 nM APP 670/671; 0.036 nM control). The highest load of neuronal plaques (NPs) was observed in the parietal cortex of APP 670/671 brains, whereas the number of [3H]nicotine binding sites was less impaired compared with other cortical brain regions. Except for a positive significant correlation between the number of [3H]nicotine binding sites and number of NPs in the parietal cortex, no strict correlation was observed between nAChR deficits and the presence of NPs and neurofibrillary tangles, suggesting that these different processes may be closely related but not strictly dependent on each other.  相似文献   

8.
The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.  相似文献   

9.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

10.
The relationship between altered metabolism of the amyloid-β precursor protein (APP) and Alzheimer's disease is well established but the physiological roles of APP still remain unclear. Here, we studied Ca(2+) signaling in primary cultured and freshly dissociated cortical astrocytes from APP knockout (KO) mice and from Tg5469 mice overproducing by five- to sixfold wild-type APP. Resting cytosolic Ca(2+) (measured with fura-2) was not altered in cultured astrocytes from APP KO mice. The stored Ca(2+) evaluated by measuring peak amplitude of cyclopiazonic acid [CPA, endoplasmic reticulum (ER) Ca(2+) ATPase inhibitor]-induced Ca(2+) transients in Ca(2+)-free medium was significantly smaller in APP KO astrocytes than in wild-type cells. Store-operated Ca(2+) entry (SOCE) activated by ER Ca(2+) store depletion with CPA was also greatly reduced in APP KO astrocytes. This reflected a downregulated expression in APP KO astrocytes of TRPC1 (C-type transient receptor potential) and Orai1 proteins, essential components of store-operated channels (SOCs). Indeed, silencer RNA (siRNA) knockdown of Orai1 protein expression in wild-type astrocytes significantly attenuated SOCE. SOCE was also essentially reduced in freshly dissociated APP KO astrocytes. Importantly, knockdown of APP with siRNA in cultured wild-type astrocytes markedly attenuated ATP- and CPA-induced ER Ca(2+) release and extracellular Ca(2+) influx. The latter correlated with downregulation of TRPC1. Overproduction of APP in Tg5469 mice did not alter, however, the stored Ca(2+) level, SOCE, and expression of TRPC1/4/5 in cultured astrocytes from these mice. The data demonstrate that the functional role of APP in astrocytes involves the regulation of TRPC1/Orai1-encoded SOCs critical for Ca(2+) signaling.  相似文献   

11.
Expression of functional, recombinant alpha7 nicotinic acetylcholine receptors in several mammalian cell types, including HEK293 cells, has been problematic. We have isolated the recently described human ric-3 cDNA and co-expressed it in Xenopus oocytes and HEK293 cells with the human nicotinic acetylcholine receptor alpha7 subunit. In addition to confirming the previously reported effect on alpha7 receptor expression in Xenopus oocytes we demonstrate that ric-3 promotes the formation of functional alpha7 receptors in mammalian cells, as determined by whole cell patch clamp recording and surface alpha-bungarotoxin binding. Upon application of 1 mm nicotine, currents were undetectable in HEK293 cells expressing only the alpha7 subunit. In contrast, co-expression of alpha7 and ric-3 cDNAs resulted in currents that averaged 42 pA/pF with kinetics similar to those observed in cells expressing endogenous alpha7 receptors. Immunoprecipitation studies demonstrate that alpha7 and ric-3 proteins co-associate. Additionally, cell surface labeling with biotin revealed the presence of alpha7 protein on the plasma membrane of cells lacking ric-3, but surface alpha-bungarotoxin staining was only observed in cells co-expressing ric-3. Thus, ric-3 appears to be necessary for proper folding and/or assembly of alpha7 receptors in HEK293 cells.  相似文献   

12.
Valor LM  Mulet J  Sala F  Sala S  Ballesta JJ  Criado M 《Biochemistry》2002,41(25):7931-7938
The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.  相似文献   

13.
The expression of the Alzheimer amyloid protein precursor (AAPP) was examined in human, monkey, dog and rat brains. Two proteins, one identified as AAPP695 and the other as AAPP751, were immunoprecipitated from the in vitro translation of human, dog and rat brain polysomes. The AAPP751 to AAPP695 ratio was highest in human, intermediate in dog and lowest in rat brain polysomes. Human cerebral cortex contained higher levels of the AAPP751 mRNA than either dog or rat cortex. AAPP695 was detected in both cerebral cortex and cerebellum of all species examined. In contrast, AAPP751 was detected predominantly in the cortex of human, monkey and to a lesser extent dog brains while it was not detected in rat brain. These findings indicate that the amyloid precursors are differentially expressed in different mammalian brains and suggest that AAPP751 is mainly expressed in the brain regions involved in plaque formation.  相似文献   

14.
The phosphotyrosine binding domain of the neuronal protein X11alpha/mint-1 binds to the C-terminus of amyloid precursor protein (APP) and inhibits catabolism to beta-amyloid (Abeta), but the mechanism of this effect is unclear. Coexpression of X11alpha or its PTB domain with APPswe inhibited secretion of Abeta40 but not APPsbetaswe, suggesting inhibition of gamma- but not beta-secretase. To further probe cleavage(s) inhibited by X11alpha, we coexpressed beta-secretase (BACE-1) or a component of the gamma-secretase complex (PS-1Delta9) with APP, APPswe, or C99, with and without X11alpha, in HEK293 cells. X11alpha suppressed the PS-1Delta9-induced increase in Abeta42 secretion generated from APPswe or C99. However, X11alpha did not impair BACE-1-mediated proteolysis of APP or APPswe to C99. In contrast to impaired gamma-cleavage of APPswe, X11alpha or its PTB domain did not inhibit gamma-cleavage of NotchDeltaE to NICD (the Notch intracellular domain). The X11alpha PDZ-PS.1Delta9 interaction did not affect gamma-cleavage activity. In a cell-free system, X11alpha did not inhibit the catabolism of APP C-terminal fragments. These data suggest that X11alpha may inhibit Abeta secretion from APP by impairing its trafficking to sites of active gamma-secretase complexes. By specifically targeting substrate instead of enzyme X11alpha may function as a relatively specific gamma-secretase inhibitor.  相似文献   

15.
We explore the conformational dynamics of a homology model of the human alpha7 nicotinic acetylcholine receptor using molecular dynamics simulation and analyses of root mean-square fluctuations, block partitioning of segmental motion, and principal component analysis. The results reveal flexible regions and concerted global motions of the subunits encompassing extracellular and transmembrane domains of the subunits. The most relevant motions comprise a bending, hinged at the beta10-M1 region, accompanied by concerted tilting of the M2 helices that widens the intracellular end of the channel. Despite the nanosecond timescale, the observations suggest that tilting of the M2 helices may initiate opening of the pore. The results also reveal direct coupling between a twisting motion of the extracellular domain and dynamic changes of M2. Covariance analysis of interresidue motions shows that this coupling arises through a network of residues within the Cys and M2-M3 loops where Phe135 is stabilized within a hydrophobic pocket formed by Leu270 and Ile271. The resulting concerted motion causes a downward shift of the M2 helices that disrupts a hydrophobic girdle formed by 9' and 13' residues.  相似文献   

16.
17.
18.
Amyloid precursor protein (APP) family members and their proteolytic products are implicated in normal nervous system function and Alzheimer's disease pathogenesis. APP processing and Aβ secretion are regulated by neuronal activity. Various data suggest that NMDA receptor (NMDAR) activity plays a role in both non-amyloidogenic and amyloidogenic APP processing depending on whether synaptic or extrasynaptic NMDARs are activated, respectively. The APP-interacting FE65 proteins modulate APP trafficking and processing in cell lines, but little is known about their contribution to APP trafficking and processing in neurons, either in vivo or in vitro. In this study, we examined the contribution of the FE65 protein family to APP trafficking and processing in WT and FE65/FE65L1 double knockout neurons under basal conditions and following NMDAR activation. We report that FE65 proteins facilitate neuronal Aβ secretion without affecting APP fast axonal transport to pre-synaptic terminals. In addition, FE65 proteins facilitate an NMDAR-dependent non-amyloidogenic APP processing pathway. Generation of high-molecular weight (HMW) species bearing an APP C-terminal epitope was also observed following NMDAR activation. These HMW species require proteasomal and calpain activities for their accumulation. Recovery of APP polypeptide fragments from electroeluted HMW species having molecular weights consistent with calpain I cleavage of APP suggests that HMW species are complexes formed from APP metabolic products. Our results indicate that the FE65 proteins contribute to physiological APP processing and accumulation of APP metabolic products resulting from NMDAR activation.  相似文献   

19.
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.  相似文献   

20.
ABSTRACT: BACKGROUND: Inflammation processes are important participants in the pathophysiology of hypertension and cardiovascular diseases. The role of the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) in inflammation has recently been identified. Our previous study has demonstrated that the alpha7nAChR-mediated cholinergic anti-inflammatory pathway is impaired systemically in the genetic model of hypertension. In this work, we investigated the changes of alpha7nAChR expression in a model of secondary hypertension. METHODS: The 2-kidney 1-clip (2K1C) hypertensive rat model was used. Blood pressure, vagus nerve function, serum tumor necrosis factor-alpha (TNF-alpha) and both the mRNA and protein levels of alpha7nAChR in tissues from heart, kidney and aorta were measured at 4, 8 and 20 weeks after surgery. RESULTS: Compared with age-matched control, it was found that vagus nerve function was significantly decreased in 2K1C rats with the development of hypertension. Serum levels of TNF-alpha were greater in 2K1C rats than in age-matched control at 4, 8 and 20 weeks. alpha7nAChR mRNA in the heart was not altered in 2K1C rats. In the kidney of 2K1C rats, alpha7nAChR expression was significantly decreased at 8 and 20 weeks, but markedly increased at 4 weeks. alpha7nAChR mRNA was less in aorta of 2K1C rats than in age-matched control at 4, 8 and 20 weeks. These findings were confirmed at the protein levels of alpha7nAChR. CONCLUSIONS: Our results suggested that secondary hypertension may induce alpha7nAChR downregulation, and the decreased expression of alpha7nAChR may contribute to inflammation in 2K1C hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号