首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The pterin cofactor in formate dehydrogenase isolated from Methanobacterium formicium is identified as molybdopterin guanine dinucleotide. The pterin, stabilized as the alkylated, dicarboxamidomethyl derivative, is shown to have absorption and chromatographic properties identical to those of the previously characterized authentic compound. Treatment with nucleotide pyrophosphatase produced the expected degradation products GMP and carboxyamidomethyl molybdopterin. The molybdopterin guanine dinucleotide released from the enzyme by treatment with 95% dimethyl sulfoxide is shown to be functional in the in vitro reconstitution of the cofactor-deficient nitrate reductase in extracts of the Neurospora crassa nit-1 mutant.  相似文献   

2.
Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, <0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.Abbreviations MFR methanofuran - CHO-MFR N-formylmethanofuran - MGD molybdopterin guanine dinucleotide - MAD molybdopterin adenine dinucleotide - MHD molybdopterin hypoxanthine dinucleotide - FPLC fast protein liquid chromatography - SDS/PAGE sodium dodecylsulfate/polyacrylamide gel electrophoresis - ICP-MS inductively coupled plasma mass spectrometry  相似文献   

3.
The soluble periplasmic subunit of the formate dehydrogenase FdhA of the tetrachloroethene-reducing anaerobe Sulfurospirillum multivorans was purified to apparent homogeneity and the gene (fdhA) was identified and sequenced. The purified enzyme catalyzed the oxidation of formate with oxidized methyl viologen as electron acceptor at a specific activity of 1683 nkat/mg protein. The apparent molecular mass of the native enzyme was determined by gel filtration to be about 100 kDa, which was confirmed by the fdhA nucleotide sequence. fdhA encodes for a pre-protein that differs from the truncated mature protein by an N-terminal 35-amino-acid signal peptide containing a twin arginine motif. The amino acid sequence of FdhA revealed high sequence similarities to the larger subunits of the formate dehydrogenases of Campylobacter jejuni, Wolinella succinogenes, Escherichia coli (FdhN, FdhH, FdhO), and Methanobacterium formicicum. According to the nucleotide sequence, FdhA harbors one Fe4/S4 cluster and a selenocysteine residue as well as conserved amino acids thought to be involved in the binding of a molybdopterin guanidine dinucleotide cofactor.Abbreviations Fdh Formate dehydrogenase - PCE Tetrachloroethene  相似文献   

4.
A Δsud deletion mutant of Wolinella succinogenes that lacked the periplasmic sulfide dehydrogenase (Sud) was constructed using homologous recombination. The mutant grew with sulfide and fumarate, indicating that Sud was not a component of the electron transport chain that catalyzed fumarate respiration with sulfide as an electron donor. Likewise, growth with formate and either polysulfide or sulfur was not affected by the deletion. Removal of Sud from wild-type W. succinogenes by spheroplast formation did not decrease the activity of electron transport to polysulfide. The Δpsr deletion mutant that lacks polysulfide reductase (Psr) grew by fumarate respiration with sulfide as an electron donor, indicating that Psr is not required for this activity. Received: 31 August 1995 / Accepted: 25 October 1995  相似文献   

5.
Wolinella succinogenes can grow at the expense of sulphur reduction by formate. The enzymes involved in the catalysis of this catabolic reaction have been investigated. From the results the following conclusions are drawn: 1. The enzyme isolated as a sulphide dehydrogenase from the cytoplasmic membrane of W. succinogenes is the functional sulphur reductase that operates in the electron transport from formate to sulphur. 2. The enzyme (Mr 200,000) consists essentially of one type of subunit with the Mr 85,000 and contains equal amounts of free iron and sulphide (120 mol/g protein), but no heme. It represents the first functional sulphur reductase ever isolated. 3. The electron transport chain catalyzing sulphur reduction by formate consists merely of formate dehydrogenase and sulphur reductase. A lipophilic quinone which mediates the transfer of electrons between enzymes in other chains, is apparently not involved. This is the first known example of a phosphorylative electron transport chain that operates without a quinone. 4. The same formate dehydrogenase appears to operate in the electron transport both with sulphur and with fumarate as the terminal electron acceptor in W. succinogenes.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DTT dithiothreitol - MK menaquinone (vitamin K2) - PMSF phenylmethane sulfonylfluoride - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine - Tea triethanolamine - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonate Dedicated to Professor F. Schneider (Philipps-Universität Marburg) on the occasion of his 60th birthday  相似文献   

6.
The bis(carboxamidomethyl) derivatives of the molybdenum cofactors in three eubacterial molybdo-iron/sulphur-flavoproteins were examined. The quinoline oxidoreductases from Pseudomonas putida 86 and Rhodococcus spec. B1 contain molybdopterin cytosine dinucleotide. In xanthine dehydrogenase from Pseudomonas putida 86, however, only molybdopterin was found. The bis(carboxamidomethyl) derivatives of all three enzymes were treated with nucleotide pyrophosphatase, but only those of the quinoline oxidoreductases were cleaved into [bis(carboxamidomethyl)]molybdopterin and CMP, whereas that of xanthine dehydrogenase remained unchanged. Dephosphorylation by alkaline phosphatase yielded dephospho-[bis(carboxamidomethyl)]molybdopterin and cytidine from the cleaved molybdopterin cytosine dinucleotide. The bis(carboxamidomethyl) derivative from xanthine dehydrogenase was converted to dephospho-[bis(carboxamidomethyl)]molybdopterin by alkaline phosphatase. Acid hydrolysis of the purified enzymes and analysis of the hydrolysate by HPLC confirmed that compared with the xanthine dehydrogenase both quinoline oxidoreductases contain CMP.  相似文献   

7.
The narB gene of the cyanobacterium Synechococcus sp. strain PCC 7942 encodes an assimilatory nitrate reductase that uses photosynthetically reduced ferredoxin as the physiological electron donor. This gene was expressed in Escherichia coli and electrophoretically pure preparations of the enzyme were obtained using affinity chromatography with either reduced-ferredoxin or NarB antibodies. The electronic absorption spectrum of the oxidized enzyme showed a shoulder at around 320 nm and a broad absorption band between 350 and 500 nm. These features are indicative of the presence of an iron-sulfur centre(s) and accordingly metal analysis showed ca. 3 atoms of Fe per molecule of protein that could represent a [3Fe-4S] cluster. Further analysis indicated the presence of 1 atom of Mo and 2 molecules of ribonucleotide-conjugated molybdopterin per molecule of protein. This, together with the requirement of a mobA gene for production of an active enzyme, strongly suggests the presence of Mo in the form of the bis-MGD (bis-molybdopterin guanine dinucleotide) cofactor in Synechococcusnitrate reductase. A model for the coordination of the Mo atom to the enzyme is proposed. Four conserved Cys residues were replaced by site-directed mutagenesis. The effects of these changes on the enzyme activity and electronic absorption spectra support the participation of those residues in iron-sulfur cluster coordination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The mob genes of several bacteria have been implicated in the conversion of molybdopterin to molybdopterin guanine dinucleotide. The mob locus of Rhodobacter sphaeroides WS8 comprises three genes, mobABC. Chromosomal in-frame deletions in each of the mob genes have been constructed. The mobA mutant strain has inactive DMSO reductase and periplasmic nitrate reductase activities (both molybdopterin guanine dinucleotide-requiring enzymes), but the activity of xanthine dehydrogenase, a molybdopterin enzyme, is unaffected. The inability of a mobA mutant to synthesise molybdopterin guanine dinucleotide is confirmed by analysis of cell extracts of the mobA strain for molybdenum cofactor forms following iodine oxidation. Mutations in mobB and mobC are not impaired for molybdoenzyme activities and accumulate wild-type levels of molybdopterin and molybdopterin guanine dinucleotide, indicating they are not compromised in molybdenum cofactor synthesis. In the mobA mutant strain, the inactive DMSO reductase is found in the periplasm, suggesting that molybdenum cofactor insertion is not necessarily a pre-requisite for export.  相似文献   

9.
The requirement for the mobA gene in key assimilatory and respiratory nitrogen metabolism of Pseudomonas aeruginosa PAO1 was investigated by mutational analysis of PA3030 (mobA; MoCo guanylating enzyme), PA1779 (nasA; assimilatory nitrate reductase), and PA3875 (narG; respiratory nitrate reductase). The mobA mutant was deficient in both assimilatory and respiratory nitrate reductase activities, whereas xanthine dehydrogenase activity remained unaffected. Thus, P. aeruginosa requires both the molybdopterin (MPT) and molybdopterin guanine dinucleotide (MGD) forms of the molybdenum cofactor for a complete spectrum of nitrogen metabolism, and one form cannot substitute for the other. Regulation studies using a Φ(PA3030-lacZGm) reporter strain suggest that expression of mobA is not influenced by the type of nitrogen source or by anaerobiosis, whereas assimilatory nitrate reductase activity was detected only in the presence of nitrate.  相似文献   

10.
Wolinella succinogenes grows by anaerobic respiration with formate and polysulfide. Polysulfide forms spontaneously from sulfur and sulfide. Here we report that this eubacterium also grows with formate and elemental sulfur under conditions that do not allow polysulfide formation. With the appropriate amount of Fe2+ added to the medium, the concentration of polysulfide was calculated to be 0.4 nM, which is 1/400th of the concentration that of dissolved elemental sulfur. At commensurable growth rates, the growth yield with sulfur was one quarter of that with polysulfide as electron acceptor. The same low growth yield either with sulfur or with polysulfide as electron acceptor was measured for a Δpsr mutant that lacks the genes encoding polysulfide reductase (Psr). Received: 8 June 1995 / Accepted: 12 September 1995  相似文献   

11.
Abstract Respiratory nitrate reductase from the denitrifying bacterium Pseudomonas stutzeri is an iron-sulfur enzyme containing the molybdenum cofactor. Hydrolysis of native nitrate reductase with aqueous sulfuric acid revealed 0.92 mol of 5'-GMP per mol of enzyme. The pterin present in the molybdenum cofactor was liberated from the protein and reacted with iodoacetamide. The resulting di(carboxamidomethyl) (cam) derivative was purified on a C18-cartridge and analyzed for its structural elements. Treatment of the cam derivative with nucleotide pyrophosphatase and subsequent HPLC analysis revealed the formation of di(cam)molybdopterin and 5'-GMP at a 1:1 molar ratio and with a yield of 79% with respect to the molybdenum content of the enzyme. Treatment of the cam derivative with nucleotide pyrophosphatase and alkaline phosphatase led to the liberation of 0.51 mol dephosphodi(cam)molybdopterin and of 0.59 mol guanosine per mol of enzyme, which is equal to a molar ratio of 1:2.2. The results indicate, that the organic moiety of the molybdenum cofactor of nitrate reductase from P. stutzeri is molybdopterin guanine dinucleotide of which one mol is contained per mol of nitrate reductase.  相似文献   

12.
Dimethylsulfide (DMS) dehydrogenase is a complex heterotrimeric enzyme that catalyzes the oxidation of DMS to DMSO and allows Rhodovulum sulfidophilum to grow under photolithotrophic conditions with DMS as the electron donor. The enzyme is a 164 kDa heterotrimer composed of an alpha-subunit that binds a bis(molybdopterin guanine dinucleotide)Mo cofactor, a polyferredoxin beta-subunit, and a gamma-subunit that contains a b-type heme. In this study, we describe the thermodynamic characterization of the redox centers within DMS dehydrogenase using EPR- and UV-visible-monitored potentiometry. Our results are compared with those of other bacterial Mo enzymes such as NarGHI nitrate reductase, selenate reductase, and ethylbenzene dehydrogenase. A remarkable similarity in the redox potentials of all Fe-S clusters is apparent.  相似文献   

13.
A fully defined in vitro system has been developed for studying the mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase (DMSOR). R. sphaeroides DMSOR expressed in a mobA(-) Escherichia coli strain lacks molybdopterin and molybdenum but contains a full complement of guanine in the form of GMP and GDP. Escherichia coli MobA, molybdopterin-Mo, GTP, and MgCl(2) are required and sufficient for the in vitro activation of purified DMSOR expressed in the absence of MobA. High levels of MobA inhibit the in vitro activation. A chaperone is not required for the in vitro activation process. The reconstituted DMSOR can exhibit up to 73% of the activity observed in recombinant DMSOR purified from a wild-type strain. The use of radiolabeled GTP has demonstrated incorporation of the guanine moiety from the GTP into the activated DMSOR. No role was observed for E. coli MobB in the in vitro activation of apo-DMSOR. This work also represents the first time that the MobA-mediated conversion of molybdopterin to molybdopterin guanine dinucleotide has been demonstrated directly without using the activation of a molybdoenzyme as an indicator for cofactor formation.  相似文献   

14.
A monomeric flavoprotein (18.8 kDa) was isolated from the soluble cell fraction of Wolinella succinogenes and was identified as a flavodoxin based on its N-terminal sequence, FMN content, and redox properties. The midpoint potentials of the flavodoxin (Fld) at pH 7.5 were measured as –95 mV (Fldox/Flds) and –450 mV (Flds/Fldred) relative to the standard hydrogen electrode. The cellular flavodoxin content [0.3 μmol (g protein)–1] was the same in bacteria grown with fumarate or with polysulfide as the terminal acceptor of electron transport. The flavodoxin did not accept electrons from hydrogenase or formate dehydrogenase, the donor enzymes of electron transport to fumarate or polysulfide. Pyruvate:flavodoxin oxidoreductase activity [180 U (g cellular protein)–1] was detected in the soluble cell fraction of W. succinogenes grown with fumarate or polysulfide. The enzyme was equally active with Fldox or Flds at high concentrations. The K m for Flds (80 μM) was larger than that for Fldox and for the ferredoxin isolated from W. succinogenes (15 μM). We conclude that flavodoxin serves anabolic rather than catabolic functions in W. succinogenes. Received: 15 May 1996 / Accepted: 21 June 1996  相似文献   

15.
During growth with fumarate as the terminal electron transport acceptor and either formate or sulfide as the electron donor, Wolinella succinogenes induced a peri-plasmic protein (54 kDa) that reacted with an antiserum raised against the periplasmic fumarate reductase (Fcc) of Shewanella putrefaciens. However, the periplasmic cell fraction of W. succinogenes did not catalyze fumarate reduction with viologen radicals. W. succinogenes grown with polysulfide instead of fumarate contained much less (< 10%) of the 54-kDa antigen, and the antigen was not detectable in nitrate-grown bacteria. The antigen was most likely encoded by the fccA gene of W. succinogenes. The antigen was absent from a ΔfccABC mutant, and its size is close to that of the protein predicted by fccA. The fccA gene probably encodes a pre-protein carrying an N-terminal signal peptide. The sequence of the mature FccA (481 residues, 52.4 kDa) is similar (31% identity) to that of the C-terminal part (450 residues) of S. putrefaciens fumarate reductase. As indicated by Northern blot analysis, fccA is cotranscribed with fccB and fccC. The proteins predicted from the fccB and fccC gene sequences represent tetraheme cytochromes c. FccB is similar to the N-terminal part (150 residues) of S. putrefaciens fumarate reductase, while FccC resembles the tetraheme cytochromes c of the NirT/NapC family. The ΔfccABC mutant of W. succinogenes grew with fumarate and formate or sulfide, suggesting that the deleted proteins were not required for fumarate respiration with either electron donor. Received: 26 September 1997 / Accepted: 8 December  相似文献   

16.
The Escherichia coli mob locus is required for synthesis of active molybdenum cofactor, molybdopterin guanine dinucleotide. The mobB gene is not essential for molybdenum cofactor biosynthesis because a deletion of both mob genes can be fully complemented by just mobA. Inactive nitrate reductase, purified from a mob strain, can be activated in vitro by incubation with protein FA (the mobA gene product), GTP, MgCl2, and a further protein fraction, factor X. Factor X activity is present in strains that lack MobB, indicating that it is not an essential component of factor X, but over-expression of MobB increases the level of factor X. MobB, therefore, can participate in nitrate reductase activation. The narJ protein is not a component of mature nitrate reductase but narJ mutants cannot express active nitrate reductase A. Extracts from narJ strains are unable to support the in vitro activation of purified mob nitrate reductase: they lack factor X activity. Although the mob gene products are necessary for the biosynthesis of all E. coli molybdoenzymes as a result of their requirement for molybdopterin guanine dinucleotide, NarJ action is specific for nitrate reductase A. The inactive nitrate reductase A derivative in a narJ strain can be activated in vitro following incubation with cell extracts containing the narJ protein. NarJ acts to activate nitrate reductase after molybdenum cofactor biosynthesis is complete.  相似文献   

17.
DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes   总被引:1,自引:0,他引:1  
The anaerobic rumen bacterium Wolinella succinogenes was able to grow by respiration with dimethylsulphoxide (DMSO) as electron acceptor and formate or H2 as electron donors. The growth yield amounted to 6.7 g and 6.4 g dry cells/mol DMSO with formate or H2 as the donors, respectively. This suggested an ATP yield of about 0.7 mol ATP/mol DMSO. Cell homogenates and the membrane fraction contained DMSO reductase activity with a high K m (43 mM) for DMSO. The electron transport from H2 to DMSO in the membranes was inhibited by 2-(heptyl)-4-hydroxyquinoline N-oxide, indicating the participation of menaquinone. Formation of DMSO reductase activity occurred only during growth on DMSO, presence of other electron acceptors (fumarate, nitrate, nitrite, N2O, and sulphur) repressed the DMSO reductase activity. DMSO can therefore be used by W. succinogenes as an acceptor for phosphorylative electron transport, but other electron acceptors are used preferentially.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DMNH 2 Reduced DMN - DMS Dimethylsulphide (CH3)2S - DMSO Dimethylsulphoxide (CH3)2SO - HQNO 2-(Heptyl)-4-hydroxyquinoline-N-oxide - TMAO Trimethylamine-N-oxide - Y s Growth yield for substrate S  相似文献   

18.
G. Unden  A. Kröger 《BBA》1983,725(2):325-331
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = ?224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

19.
As many prokaryotic molybdoenzymes, the trimethylamine oxide reductase (TorA) of Escherichia coli requires the insertion of a bis(molybdopterin guanine dinucleotide)molybdenum cofactor in its catalytic site to be active and translocated to the periplasm. We show in vitro that the purified apo form of TorA was activated weakly when an appropriate bis(molybdopterin guanine dinucleotide)molybdenum source was provided, whereas addition of the TorD chaperone increased apoTorA activation up to 4-fold, allowing maturation of most of the apoprotein. We demonstrate that TorD alone is sufficient for the efficient activation of apoTorA by performing a minimal in vitro assay containing only the components for the cofactor synthesis, apoTorA and TorD. Interestingly, incubation of apoTorA with TorD before cofactor addition led to a significant increase of apoTorA activation, suggesting that TorD acts on apoTorA before cofactor insertion. This result is consistent with the fact that TorD binds to apoTorA and probably modifies its conformation in the absence of cofactor. Therefore, we propose that TorD is involved in the first step of TorA maturation to make it competent to receive the cofactor.  相似文献   

20.
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum. Dimethyl sulphide dehydrogenase was shown to contain bis(molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdopterin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB, ddhD and ddhC. DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c2 mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号