首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine control of penicillin biosynthesis   总被引:9,自引:0,他引:9  
  相似文献   

2.
Pipecolic acid oxidase from Rhodotorula glutinis, which converts pipecolic acid to alpha-aminoadipic-delta-semialdehyde, an intermediate of the biosynthetic pathway of lysine, was purified 290-fold. The enzyme from the crude extract and purified preparation exhibited a molecular weight of approximately 43,000 and was composed of a single subunit. The purified enzyme was heat labile and exhibited a pH optimum of 8.5 and an apparent Km for L-pipecolic acid of 1.67 X 10(-3) M. L-Proline acted as a competitive inhibitor for the enzyme. The enzyme was inhibited by the sulfhydryl agents p-chloromercuribenzoate and mercuric chloride. The in vitro enzyme activity required oxygen and upon oxidation of pipecolic acid, oxygen was reduced to hydrogen peroxide.  相似文献   

3.
Male rats weanling fed 20% gluten diet for 90 days of demonstrate to have about one-third lower level of carnitine per gram of skeletal muscle and heart muscle than the group which received the same diet supplemented with 1% of lysine. The carnitine level of the liver, however, was significantly higher in the unsupplemented versus the lysine supplemented groups.  相似文献   

4.
The classification of lysine biosynthetic pathways in various organisms have been used to investigate their descent in evolution. We have attempted these determinations in the diatoms Amphora coffeaeformis var:perpusilla (Grunow Cleve.) and Phaeodactylum tricornutum (Bohlin). Additionally, we have verified earlier results of Vogel in a green alga, Chlorella pyrenoidosa strain Tx 71105 (Texas Culture Collection). Our research indicates that the diaminopimelic acid route is involved in all three organisms. While these studies do not exclude the possible co-existence of the α-aminoadipic acid route, the results imply a closer evolutionary relationship of pennate diatoms to bacteria and “classical” photosynthetic plants rather than to heterotrophic or mixotrophic fungi and atypical algal strains such as the Euglenophyta.  相似文献   

5.
The reduction of alpha-aminoadipate to alpha-aminoadipic delta-semialdehyde by a cell-free extract of Saccharomyces is shown to be a three-step process. First the amino acid reacts with ATP to form an adenylyl derivative. Then the adenylyl derivative of alpha-aminoadipate is reduced in the presence of NADPH. In the third step the reduced adenylyl derivative of the amino acid is cleaved to form alpha-aminoadipic delta-semialdehyde. The presence of Mg(2+) is necessary for the first and second steps. The third step does not need any cofactors. The product of the first step was isolated by chromatography after incubating the cell-free extract of Saccharomyces with alpha-aminoadipate, ATP and Mg(2+). The isolated product was identified as an adenylyl derivative of alpha-aminoadipate and could be converted into alpha-aminoadipic delta-semialdehyde under the stated experimental conditions. The product of the second step was too unstable to be identified.  相似文献   

6.
The inhibitory effect of L-lysine on penicillin biosynthesis by Penicillium chrysogenum has been compared in a low-producing strain (Wis. 54-1255) and a high-producing strain (ASP-78). Lysine inhibited total penicillin synthesis to a similar extent in both strains. However, in the high-producing strain the onset of penicillin synthesis occurred even at a high lysine concentration, whereas in the low-producing strain lysine had to be depleted before penicillin production commenced.  相似文献   

7.
Sites and regulation of carnitine biosynthesis in mammals   总被引:2,自引:0,他引:2  
Although the pathway of carnitine biosynthesis in mammals is known, the location of active synthesis of carnitine and regulation of the pathway have not been clearly defined. Studies in several laboratories have shown that the enzymes that collectively convert epsilon-N-trimethyllysine (epsilon-N-TML) to gamma-butyrobetaine are found in all tissues studied in rats and humans, but distribution of the final enzyme of the pathway, gamma-butyrobetaine, 2-oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase) is variable from one species to another. Evidence from studies in rats and humans indicates that uptake and metabolism of epsilon-N-TML by the kidney is necessary for carnitine biosynthesis from circulating epsilon-N-TML. Limited data now available suggest that some of the intracellularly derived epsilon-N-TML is metabolized to gamma-butyrobetaine and carnitine in the tissue of origin, and some is released into the circulation. epsilon-N-TML in mammals is apparently derived from lysine residues in proteins, which are methylated and later released by protein hydrolysis. This source probably provides sufficient substrate for carnitine biosynthesis. Carnitine biosynthesis from epsilon-N-TML is not regulated by end-product feedback mechanisms. Hepatic gamma-butyrobetaine hydroxylase activity in rats and humans is developmentally regulated, and is increased by dietary L-thyroxine in adult rats. No other mechanisms for regulation of carnitine biosynthesis have been identified.  相似文献   

8.
Fucose: biosynthesis and biological function in mammals   总被引:13,自引:0,他引:13  
Becker DJ  Lowe JB 《Glycobiology》2003,13(7):41R-53R
Fucose is a deoxyhexose that is present in a wide variety of organisms. In mammals, fucose-containing glycans have important roles in blood transfusion reactions, selectin-mediated leukocyte-endothelial adhesion, host-microbe interactions, and numerous ontogenic events, including signaling events by the Notch receptor family. Alterations in the expression of fucosylated oligosaccharides have also been observed in several pathological processes, including cancer and atherosclerosis. Fucose deficiency is accompanied by a complex set of phenotypes both in humans with leukocyte adhesion deficiency type II (LAD II; also known as congenital disorder of glycosylation type IIc) and in a recently generated strain of mice with a conditional defect in fucosylated glycan expression. Fucosylated glycans are constructed by fucosyltransferases, which require the substrate GDP-fucose. Two pathways for the synthesis of GDP-fucose operate in mammalian cells, the GDP-mannose-dependent de novo pathway and the free fucose-dependent salvage pathway. In this review, we focus on the biological functions of mammalian fucosylated glycans and the biosynthetic processes leading to formation of the fucosylated glycan precursor GDP-fucose.  相似文献   

9.
《Phytochemistry》1983,22(1):65-69
In leaves of alkaloid producing Lupinus polyphyllus lysine decarboxylase activity is positively correlated with the chlorophyll content during leaf regreening. A similar positive correlation was found between the leaf alkaloid content and lysine decarboxylase activity in L. albus and L. luteus. These results indicate that in lupin leaves lysine decarboxylase is an integrated part of the alkaloid specific biosynthetic sequence. Lysine decarboxylase could also be demonstrated in 46 alkaloidal and non-alkaloidal species out of 17 families of higher plants, including cell cultures of seven species.  相似文献   

10.
The alpha-aminoadipate (AA) pathway for the biosynthesis of lysine was investigated in the wild type and in lysine auxotrophs of the fission yeast Schizosaccharomyces pombe. Of the eight enzyme activities of the AA pathway that have been examined so far, six were present in the extract of wild-type S. pombe cells. Growth response to AA and accumulation studies indicated that three lysine auxotrophs, the lys2-97, lys4-95, and lys8-1 strains, were blocked before the AA step and that four lysine auxotrophs, the lys1-131, lys3-37, lys6-3, and lys7-2 strains, were blocked after the AA step. Among the mutants investigated, the lys2-97 mutant exhibited an enzyme lesion at the cis-homoaconitate hydratase step, the lys1-131 and lys7-2 mutants exhibited lesions at the AA reductase step, and lys3-37 exhibited a lesion at the saccharopine dehydrogenase step. These results demonstrated the basic similarity of the AA pathway in S. pombe and Saccharomyces cerevisiae.  相似文献   

11.
Streptomyces clavuligerus, Streptomyces lipmanii and Nocardia (formerly Streptomyces) lactamdurans are Gram-positive mycelial bacteria that produce medically important beta-lactam antibiotics (penicillins and cephalosporins including cephamycins) that are synthesized through a series of reactions starting from lysine, cysteine and valine. L-lysine epsilon-aminotransferase (LAT) is the initial enzyme in the two-step conversion of L-lysine to L-alpha-aminoadipic acid, a specific precursor of all penicillins and cephalosporins. Whereas S. clavuligerus uses LAT for cephalosporin production, it uses the cadaverine pathway for catabolism when lysine is the nitrogen source for growth. Although the cadaverine path is present in all examined streptomycetes, the LAT pathway appears to exist only in beta-lactam-producing strains. Genetically increasing the level of LAT enhances the production of cephamycin. LAT is the key rate-limiting enzyme in cephalosporin biosynthesis in S. clavuligerus strain NRRL 3585. This review will summarize information on this important enzyme.  相似文献   

12.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

13.
14.
Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography–mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.  相似文献   

15.
16.
Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-l-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound.  相似文献   

17.
D E Ehmann  A M Gehring  C T Walsh 《Biochemistry》1999,38(19):6171-6177
A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.  相似文献   

18.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

19.
Aspartate kinase (AK, EC 2.7.2.4) and homoserine dehydrogenase (HSDH, EC 1.1.1.3) have been partially purified and characterised from immature sorghum seeds. Two peaks of AK activity were eluted by anion‐exchange chromatography [diethylaminoethyl (DEAE)‐Sephacel] with 183 and 262 mM KCl, and both activities were inhibited by lysine. Similarly, two peaks of HSDH activity were eluted with 145 and 183 mM KCl; the enzyme activity in the first peak in elution order was shown to be resistant to threonine inhibition, whereas the second was sensitive to threonine inhibition. However, following gel filtration chromatography (Sephacryl S‐200), one peak of AK activity co‐eluted with HSDH and both activities were sensitive to threonine inhibition, suggesting the presence of a bifunctional threonine‐sensitive AK–HSDH isoenzyme with a molecular mass estimated as 167 kDa. The activities of AK and HSDH were studied in the presence of lysine, threonine, methionine, valine, calcium, ethylene glycol bis(2‐aminoethylether)‐N,N,NN′‐tetraacetic acid, calmodulin, S‐adenosylmethionine (SAM), S‐2‐aminoethyl‐l ‐cysteine (AEC) and increasing concentrations of KCl. AK was shown to be inhibited by threonine and lysine, confirming the existence of two isoenzymes, one sensitive to threonine and the other sensitive to lysine, the latter being predominant in sorghum seeds. Methionine, SAM plus lysine and AEC also inhibited AK activity; however, increasing KCl concentrations and calcium did not produce any significant effect on AK activity, indicating that calcium does not play a role in AK regulation in sorghum seeds. HSDH also exhibited some inhibition by threonine, but the majority of the activity was not inhibited, thus indicating the existence of a threonine‐sensitive isoenzyme and a second predominant threonine‐insensitive isoenzyme. Valine and SAM plus threonine also inhibited HSDH; however, increasing concentrations of KCl and calcium had no inhibitory effect.  相似文献   

20.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号