首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human TSPY is a candidate oncogene and is supposed to function as a proliferation factor during spermatogenesis. It is the only mammalian protein-coding gene known to be organized as a tandem repeat gene family. It is expressed at highest level in spermatogonia and to a lower amount in primary spermatocytes. To characterize the human TSPY promoter we used the luciferase reporter system in a mouse spermatogonia derived cell line (GC-1spg) and in a GC-4spc cell line, that harbour prophase spermatocytes of the preleptotene and early pachytene stage. We isolated a 1303 bp fragment of the 5′-flanking region of exon 1 that shows significant promoter activity in GC-1spg and reduced activity in GC-4spc cells. In order to gain further insight into the organization of the TSPY-promoter, stepwise truncations of the putative promoter sequence were performed. The resulting fragments were cloned into the pGL3-vector and analysed for reporter gene activity in the murine germ cell lines GC-1spg and GC-4spc, leading to the characterization of a core promoter (−159 to −1), an enhancing region (−673 to −364) and a silencing region (−1262 to −669). Database research for cis-active elements yielded two putative SOX-like binding sites in the enhancing region and reporter gene activity was drastically reduced when three nucleotides of the AACAAT SOX core sequence were mutated. Our findings strongly suggest that testis-specific expression of human TSPY is mediated by Sox proteins. (Mol Cell Biochem 276: 159–167, 2005)  相似文献   

2.
A –1027 bp to +108 bp region of Na-K-ATPase 3 gene promoter has been searched for the presence of thyroid response elements (TRE). Computer analysis of this sequence using a consensus TRE sequence revealed the presence of four putative TRE rich regions referred to as regions I (–636 to –457 bp), II (–218 to –106 bp), III (–106 to –6 bp) and IV (–6 to +108 bp). Cotransfection of the luciferase linked full length construct as well as constructs progressively devoid of the TRE rich regions in Cos1 cells revealed that regions I and III are positively regulated by T 3 whereas there are some sequences in region II which can suppress the positive regulatory effect of region III but not of region I, TRE IV seems to have no functional role. EMSA of the three functional TRE rich regions (I, II and III) showed strong and specific interaction with thyroid hormone receptor (TR) cloned and expressed in baculovirus. The overall results suggest the regulation of Na-K-ATPase 3 gene by T 3 is complex involving several thyroidal regulatory elements.  相似文献   

3.
4.
5.
6.
Selective gene expression in different populations of cells of the root apex of transgenic tobacco could be evidenced by means of GUS constructs with deletions of the rolB promoter and fusions with the CaMV 35S minimal promoter. Five regulatory regions have been broadly identified in the rolB 5 non-coding region. The presence of all five domains (A to E) directs gene expression in the root cap, in the protoderm and in the different tissues within the root meristematic region: the dermatocalyptrogen, the cortex and the vascular cylinder. Deletion of domain A (–623 to –471) selectively suppresses expression in non-meristematic cells, i.e. the root cap and the protoderm. Deletion of either domain B (–341 to –306) or E (80 bp around the TATA box) causes loss of expression in all cells of the root apex: constructs C+D+E, B+C+D, B+C are inactive. Domain D (70 bp around the CAAT box) is necessary for gene expression in the dermatogen and in meristematic cells of the cortex but not in the innermost meristematic layer: construct B+C+E is active only in vascular meristematic cells. Domain C (–216 to –158) seems to have a double regulatory role as construct B+E is no longer expressed in meristematic cells of the vascular cylinder but is very active in the protoderm. Constructs allowing gene expression in meristematic cells are also inducible by auxin in leaf protoplasts, while activation of the regulatory elements necessary for gene expression in the non-meristematic cells of the root apex do not seem to depend upon the hormone. The connection between auxin induction and meristematic expression is discussed.  相似文献   

7.
The bean grp1.8 full-length promoter is specifically active in vascular tissue during normal development of tobacco. Deletion of a negative regulatory element resulted in ectopic activity of the promoter in cortical cells of hypocotyls, roots and stems. A 169 bp fragment (–205 to –36) of the grp1.8 promoter conferred vascular-specific expression to CaMV 35S minimal promoters whereas a 141 bp fragment (–205 to –64) strongly activated these minimal promoters both in vascular and cortical cells. These experiments defined a new regulatory element (VSE) that is essential for vascular-specific expression and is located between –64 and –36. The 141 bp grp1.8 promoter sequence had enhancer-like properties as it was active in both orientations. A 24 bp sequence (bp –119 to –96, corresponding to the SE1 regulatory element) enhanced expression from several minimal promoters strongly but unspecifically, whereas a 26 bp sequence (–98 to –73, corresponding to the RSE regulatory element) induced vascular-specific expression. Thus, the grp1.8 promoter is regulated by a combinatorial mechanism that can integrate the action of different, non-additively acting regulatory elements into vascular-specific expression.  相似文献   

8.
Nitrite reductase (NiR) is the second enzyme in the nitrate assimilatory pathway reducing nitrite to ammonium. The expression of the NiR gene is induced upon the addition of nitrate. In an earlier study, a 130 bp upstream region of the spinach NiR gene promoter, located between –330 to –200, was shown to be necessary for nitrate induction of -glucuronidase (GUS) expression in tissue-specific manner in transgenic tobacco plant [28]. To further delineate the cis-acting elements involved in nitrate regulation of NiR gene expression, transgenic tobacco plants were generated with 5 deletions in the–330 to –200 region of the spinach NiR gene promoter fused to the GUS gene. Plants with the NiR promoter deleted to –230 showed a considerable increase in GUS activity in the presence of nitrate, indicating that the 30 bp region between –230 to –200 is crucial for nitrate-regulated expression of NiR. In vivo DMS footprinting of the –300 to –130 region of the NiR promoter in leaf tissues from two independent transgenic lines revealed several nitrate-inducible footprints. Footprinting within the –230 to –181 region revealed factor binding to two adjacent GATA elements separated by 24 bp. This arrangement of GATA elements is analogous to cis-regulatory sequences found in the promoters of nitrate-inducible genes of Neurospora crassa, regulated by the NIT2 Zn-finger protein. The –240 to –110 fragment of the NiR promoter, which contains two NIT2 consensus core elements, bound in vitro to a fusion protein comprising the zinc finger domain of the N. crassa NIT2 protein. The data presented here show that nitrate-inducible expression of the NiR gene is mediated by nitrate-specific binding of trans-acting factors to sequences preserved between fungi and higher plants.  相似文献   

9.
We show for the first time that potent microRNA-433 (miR-433) inhibition of expression of the cAMP response element-binding protein CREB1 represses hepatocellular carcinoma (HCC) cell migration. We identified a miR-433 seed match region in human and mouse CREB1 3′-UTRs. Overexpression of miR-433 markedly decreased human CREB1 3′-UTR reporter activity, and the inhibitory effect of miR-433 was alleviated upon mutation of its binding site. Ectopic expression of miR-433 reduced CREB1 protein levels in a variety of human and mouse cancer cells, including HeLa, Hepa1, Huh7, and HepG2. Human CREB1 protein levels in highly invasive MHCC97H cells were diminished by expression of miR-433 but were induced by miR-433 antagomir (anti-miR-433). The expression of mouse CREB1 protein negatively correlated with miR-433 levels in nuclear receptor Shp−/− liver tissues and liver tumors compared with wild-type mice. miR-433 exhibited a significant repression of MHCC97H cell migration, which was reversed by anti-miR-433. Overexpressing miR-433 inhibited focus formation dramatically, demonstrating that miR-433 may exert a tumor suppressor function. Knockdown of CREB1 by siRNAs impeded MHCC97H cell migration and invasion and antagonized the effect of anti-miR-433. Interestingly, CREB1 siRNA decreased MHCC97H cell proliferation, which was not influenced by anti-miR-433. Overexpressing CREB1 decreased the inhibitory activity of miR-433. The CpG islands surrounding miR-433 were hypermethylated, and the DNA methylation agent 5′-aza-2′-deoxycytidine, but not the histone deacetylase inhibitor trichostatin A, drastically stimulated the expression of miR-433 and miR-127 in HCC cells. The latter is clustered with miR-433. The results reveal a critical role of miR-433 in mediating HCC cell migration via CREB1.  相似文献   

10.
11.
Transient expression and electrophoretic mobility shift assay were used to investigate the cis elements and the DNA-binding proteins involved in the regulation of expression of a 22 kDa zein-like -coixin gene. A set of unidirectional deletions was generated in a 962 bp fragment of the -coixin promoter that had been previously fused to the reporter gene GUS. The constructs were assayed by transient expression in immature maize endosperm. There was no significant decrease in GUS activity as deletions progressed from –1084 to –238. However, deletion from –238 to –158, which partially deleted the O2c box, resulted in a dramatic decrease in GUS activity emphasizing the importance of the O2 box in the quantitative expression of the gene. The –238 promoter fragment interacted with Coix endosperm nuclear proteins to form 5 DNA-protein complexes, C1–C5, as detected by EMSA. The same retarded complexes were observed when the –158 promoter fragment was used in the binding reactions. Reactions with nuclear extracts isolated from Coix endosperms harvested from 6 to 35 days after pollination revealed that the 5 DNA-protein complexes that interact with the -coixin promoter are differentially assembled during seed development. Deletion analysis carried out on the –238/ATG promoter fragment showed that a 35 bp region from –86 to –51 is essential for the formation of the complexes observed. When nuclear extracts were incubated with an antiserum raised against the maize Opaque-2 protein, the formation of 4 complexes, C1, C3, C4 and C5, was prevented indicating that an Opaque-2 like protein participates in the formation of those complexes. Complex C2 was not affected by the addition of the O2 antibody, suggesting the existence of a novel nuclear factor, CBF1, that binds to the promoter and makes protein-protein associations with other proteins present in Coix endosperm nuclei.  相似文献   

12.
13.
To investigate the regulation of plant histone H2A gene expression, we isolated two H2A genes (TH254 and TH274) from wheat, which encode two variants of H2A. Both genes had an intron in the coding region. In the promoters, some characteristic sequences, such as Oct and Nona motifs, which are conserved among plant histone genes, were located in a short region (about 120 bp) upstream from the putative TATA box. Transient expression analyses of promoter activity with H2A–GUS fusion genes using tobacco protoplasts revealed novel types of positive cis/-acting sequences in the TH254 promoter: a direct repeat of a 13 bp sequence (AGTTACATTATTG) and a stretch composed of an AT-rich sequence (ATATAGAAAATTAAAA) and a G-box (CACGTG). Quantitative S1 assay of the mRNA amounts from the TH254/GUS and TH274/GUS chimeric genes in stably transformed and cell cycle-synchronized tobacco cell lines showed that the promoters of both genes contained at least one cis/-acting element responsible for S phase-specific expression. Histochemical analysis of transgenic tobacco plants carrying the chimeric genes showed that the promoters of the two H2A genes were active in developing seedlings and flower organs but were regulated in a different manner.  相似文献   

14.
15.
Summary Cruciferin is the major seed storage protein in Brassica napus. As much as 1.9 kbp of the BnC1 cruciferin gene promoter have been sequenced and analyzed. Promoter fragments with 5 deletions from –2500 to –v202 were fused with the ß-glucuronidase reporter gene and used for Nicotiana tabacum transformation. ß-glucuronidase could be specifically expressed in transgenic tobacco seeds under the control of the BnC1 promoter and regulatory elements were found to be dispersed over 1903 bp. An almost 5-fold increase in ß-glucuronidase expression was obtained when the promoter length was increased from –379 to –498, and another 10-fold increase was observed when sequences between –1266 and –1903 were added. Histochemical analysis shows that the region between –844 and –1266 directs the expression of the chimeric gene specifically to the root apical meristem.Abbreviations GUS ß-glucuronidase - MU 4-methyl umbelliferone - MUG 4-methyl-umbelliferyl-ß-D-glucuronide - X-gluc 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide  相似文献   

16.
17.
18.
Infection of tobacco by tobacco mosaic virus (TMV) induces coordinate expression of genes encoding acidic and basic -1,3-glucanase isoforms. These genes are differentially expressed in response to other treatments. Salicylate treatment induces acidic glucanase mRNA to a higher level than basic glucanase mRNA. Ethylene treatment and wounding strongly induce the basic glucanase genes but have little effect on genes encoding the acidic isoforms. Furthermore, the basic glucanase genes are constitutively expressed in roots and lower leaves of healthy plants, whereas the acidic glucanase genes are not. In order to investigate how these expression patterns are established, we fused promoter regions of an acidic and a basic glucanase gene to the -glucuronidase (GUS) reporter gene and examined expression of these constructs in transgenic tobacco plants.A fragment of 1750 bp and two 5-truncated fragments of 650 bp and 300 bp of the acidic glucanase promoter were tested for induction of GUS gene expression after salicylate treatment and TMV infection. Upstream sequences of 1750 bp and 650 bp were sufficient for induction of the reporter gene by salicylate treatment and TMV infection, but the activity of the 300 bp fragment was strongly reduced. The results suggest that the 1750 bp upstream sequence of the acidic glucanase gene contains multiple regulatory elements.For the basic glucanase promoter it is shown that 1476 bp of upstream sequences were able to drive expression in response to TMV infection and ethylene treatment, but no response was found to incision wounding. Furthermore, high GUS activity was found in lower leaves and roots of healthy transgenic plants, carrying the 1476 bp basic glucanase promoter/GUS construct. When the promoter was truncated up to position –446 all activity was lost, indicating that the region between –1476 and –446 of the basic glucanase promoter is necessary for organ-specific and developmentally regulated expression as well as for induced expression in response to infection and other stress treatments.  相似文献   

19.
Expression of the rolB gene of A. rhizogenes T-DNA triggers root differentiation in transformed plant cells. In order to study the regulation of this morphogenetic gene, the GUS reporter gene was placed under the control of several deleted fragments of the rolB 5 non-coding region: carrot disc transformations and the analysis of transgenic tobacco plants containing these constructions identified the presence of distinct regulatory domains in the rolB promoter. Two regions (located from positions –623 to –471 and from –471 to –341, from the translation start codon) control the level but not the tissue specificity of rolB expression: progressive deletions of the rolB promoter starting from position –1185 to –341, although at different levels, maintained the same pattern of GUS expression — maximal in root meristems and less pronounced in the vascular tissue of aerial organs. Further deletion of 35 bp, from –341 to –306, drastically affected tissue specificity: GUS activity was still clearly detectable in the vascular tissue of the aerial organs while expression in the root meristem was totally suppressed. Analysis of transgenic embryos and seedlings confirmed that distinct promoter domains are responsible for meristematic (root) and differentiated (vascular) expression of rolB. Finally, we present data concerning the effects of plant hormones on the expression of rolB-GUS constructions.  相似文献   

20.
The Arabidopsis GA1 gene encodes copalyl diphosphate synthase, which catalyzes the first committed step in the gibberellin biosynthetic pathway. Previous studies indicated that the expression pattern of the GA1 gene is tissue-specific and cell-type-specific during development. Here we showed that expression of GA1 cDNA driven by the 2.4 kb 5-upstream sequence plus the GA1 genomic coding region into the third exon was able to rescue the ga1-3 mutant phenotype. To understand the mechanism controlling GA1 gene expression, cis-regulatory regions in the GA1 promoter were identified by promoter deletion analysis with the GA1--glucuronidase (GUS) gene fusion system. The second intron and the region from –1391 to –997, with respect to the translation initiation site, positively regulate overall GA1-GUS expression level in all tissues examined. Several additional regulatory regions are involved in GA1-GUS expression in all the stages except in seeds: two positive regulatory regions in the first intron and the sequence between –425 and –207, and a negative regulatory region between –1848 and –1391. We also found that the region between –997 and –796 is essential for a high level of GA1 expression in developing seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号