首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol 1,4,5-trisphosphate (IP3) receptors are calcium-releasing channels localized on the sarcoplasmic reticulum. IP3 receptors mediate the calcium mobilizing effect of a wide range of hormones, cytokines, and neurotransmitters and play an important role in variety of cell functions. The aim of this work was to study, how partial depletion of catecholamines affects the gene expression and protein levels of the type 1 IP3 receptors in rat heart. The type 1 IP3 receptor mRNA levels were studied in the left cardiac atrium and ventricle of rats treated with 6-hydroxydopamine (6-OHDA) in control and stressed conditions. The 6-OHDA produces anatomical and functional denervation resulting in decreased levels of noradrenaline and adrenaline. We also used corticoliberin (CRH) knockout mice, where secretion of adrenaline is significantly suppressed. Administration of 6-OHDA significantly decreases mRNA levels of the type 1 IP3 receptor in both, the left atrium and the left ventricle, while the gene expression of the sarcoplasmic reticular Ca2+-ATPase (SERCA 2) was unaffected. CRH knockout mice possess markedly lower levels of the type 1 IP3 receptor mRNA compared to wild-type mice in both, control and stressed conditions. These data point to the adrenergic modulation of the type 1 IP3 receptors in the rat hearts.  相似文献   

2.

Objective

Thrombin, the final coagulation product of the coagulation cascade, has been demonstrated to have many physiological effects, including pro-fibrotic actions via protease-activated receptor (PAR)-1. Recent investigations have demonstrated that activation of the cardiac local coagulation system was associated with atrial fibrillation. However, the distribution of thrombin in the heart, especially difference between the atria and the ventricle, remains to be clarified. We herein investigated the expression of thrombin and other related proteins, as well as tissue fibrosis, in the human left atria and left ventricle.

Methods

We examined the expression of thrombin and other related molecules in the autopsied hearts of patients with and without atrial fibrillation. An immunohistochemical analysis was performed in the left atria and the left ventricle.

Results

The thrombin was immunohistologically detected in both the left atria and the left ventricles. Other than in the myocardium, the expression of thrombin was observed in the endocardium and the subendocardium of the left atrium. Thrombin was more highly expressed in the left atrium compared to the left ventricle, which was concomitant with more tissue fibrosis and inflammation, as detected by CD68 expression, in the left atrium. We also confirmed the expression of prothrombin in the left atrium. The expression of PAR-1 was observed in the endocardium, subendocardium and myocardium in the left atrium. In patients with atrial fibrillation, strong thrombin expression was observed in the left atrium.

Conclusions

The strong expression levels of thrombin, prothrombin and PAR-1 were demonstrated in the atrial tissues of human autopsied hearts.  相似文献   

3.
Numerous ligands of sigma receptors are known to prolong the QT interval and therefore cause a variety of arrhythmias. High affinity binding sites for the prototypical sigma ligand haloperidol were found in membranes of cardiac myocytes from adult rats. Activation of sigma 1 receptor leads to a release of calcium from the endoplasmic reticulum that follows increased synthesis of inositol 1,4,5-trisphosphate (IP3). We studied the effect of long-term haloperidol treatment on the expression of sigma 1 receptors, IP3 receptors of type 1 and 2 in the individual parts of the rat heart, in isolated rat cardiomyocytes and in PC12 cells. We have found that prolonged treatment with haloperidol significantly increased mRNA levels of sigma 1 receptors in both atria and ventricles. Sigma 1 receptor's mRNA was increased also in isolated cardiomyocytes. Haloperidol treatment affects the expression of IP3 receptors of type 1 and 2 in cardiac atria, but not in cardiac ventricles. We observed increase in IP3 receptors in differentiated PC12 cells, but not in isolated cardiomyocytes. We propose that this increase might participate in triggering cardiac arrhythmias during haloperidol treatment, which has to be further verified.  相似文献   

4.
The locations, projections, and functions of the intracardiac ganglia are incompletely understood. Immunocytochemical labeling with the general neuronal marker protein gene product 9.5 (PGP 9.5) was used to determine the distribution of intracardiac neurons throughout the cat atria and ventricles. Fluorescence microscopy was used to determine the number of neurons within these ganglia. There are eight regions of the cat heart that contain intracardiac ganglia. The numbers of neurons found within these intracardiac ganglia vary dramatically. The total number of neurons found in the heart (6,274 +/- 1,061) is almost evenly divided between the atria and the ventricles. The largest ganglion is found in the interventricular septum (IVS). Retrogradely labeled fluorescent tracer studies indicated that the vagal intracardiac innervation of the anterior surface of the right ventricle originates predominantly in the IVS ganglion. A cranioventricular (CV) ganglion was retrogradely labeled from the anterior surface of the left ventricle but not from the anterior surface of the right ventricle. These new neuroanatomic data support the prior physiological hypothesis that the CV ganglion in the cat exerts a negative inotropic effect on the left ventricle. A total of three separate intracardiac ganglia innervate the left ventricle, i.e., the CV, IVS, and a second left ventricular (LV2) ganglion. However, the IVS ganglion provides the major source of innervation to both the left and right ventricles. This dual innervation pattern may help to coordinate or segregate vagal effects on left and right ventricular performance.  相似文献   

5.
Immunohistochemical localization of two neuropeptides possibly involved in the regulation of cardiac activity in a pulmonate mollusc, Achatina fulica Férussac, was studied. On the ventral surface of the right cerebral ganglion, more than 50 neurons with diameters of 30–50 m showed immunoreactivity to the antiserum of the neuropeptide FMRFamide. Many were also immunoreactive to an antiserum raised against Achatina cardio-excitatory peptide-1 (ACEP-1). Although FMRFamidelike immunoreactive neurons occurred in all components of the subesophageal ganglia, identifiable ACEP-1-like immunoreactive neurons were located only in the visceral ganglion and the right parietal ganglion. In the heart, FMRFamide- and ACEP-1-like immunoreactive fibers were restricted to the atrium and the aortic end of the ventricle, consistent with morphological observations of cardiac innervation. The present results suggest that FMRFamide-and ACEP-1-like peptides are involved in regulating the heart beat of this snail.  相似文献   

6.
7.
Gene expression of the type 1 and 2 inositol 1,4,5-trisphosphate (IP(3)) receptors in the rat cardiac atria and ventricles and their possible modulation by single immobilization stress was studied. Single immobilization stress significantly elevated mRNA levels for both types of these receptors. To evaluate the involvement of glucocorticoids in the modulation of the gene expression of IP(3) receptors by immobilization stress, we used adrenalectomized and/or hypophysectomized rats. Since adrenalectomy and/or hypophysectomy completely abolished increase in IP(3) receptor's mRNA levels after the immobilization, we conclude that immobilization stress elevates mRNA of type 1 and 2 IP(3) receptors, mainly through the glucocorticoid responsive element.  相似文献   

8.
Summary The localization and origin of substance P (SP)-, neuropeptide Y (NPY)-, and noradrenaline/tyrosine hydroxylase (NA/TH)-immunoreactive (IR) nerves in the guinea-pig heart were investigated by means of immunohistochemistry; quantitative analysis was performed by radioimmunoassay (NPY) and high performance liquid chromatography (NA). Both untreated animals and animals subjected to stellatectomy, combined stellatectomy and local capsaicin pretreatment of the vagal nerves or systemic application of capsaicin were studied. A dense network of SP-IR nerves was observed in the right atrium in different locations: (1) around local cardiac ganglion cells, (2) close to blood vessels, (3) within the myocardium, and (4) close to and within peri and endocardium.A moderately dense SP-innervation, mainly related to blood vessels, was found in the ventricles. Very dense networks of NPY and TH-IR nerve fibers with an overlapping distributional pattern around blood vessels and in the myocardium were seen in both the atria and the ventricles. In addition, some cell bodies in local cardiac ganglia were NPY-IR. Bilateral stellatectomy resulted in a reduction of SP-IR in the right atrium (55% of control), which was more pronounced after additional capsaicin pretreatment of the vagal nerves (44% of control).In the left ventricle no significant depletion of SP-IR was seen by either stellatectomy or combined stellatectomy and capsaicin treatment of the vagal nerves. It was not possible to establish any defined target areas within the heart for vagal or spinal SP-IR afferents by use of immunohistochemical methods. Systemic capsaicin treatment caused a total loss of SP-IR nerves in the heart. After bilateral stellatectomy the levels of NPY-IR and NA were reduced to about 10% of control in both the right atrium and left ventricle. In accordance, NPY and TH-IR nerves were also almost totally absent in the heart after bilateral stellatectomy.  相似文献   

9.
Extrahepatic synthesis and localization of angiotensinogen (ATN) have been described in animals, thus establishing the tissue renin-angiotensin (RA) system. However, there had been no reports of tissue RA systems in human organs, including the heart. In earlier, we have reported the possibility of ATN synthesis in the human heart using ribonuclease protection assay system. ATN mRNA was detected not only in the liver, but also in both the atrial and ventricular heart tissues, suggesting that ATN is synthesized in the human heart. In this report, we looked for the distribution of ATN in diseased human heart.Northern blot hybridization of cDNA with total RNA extracted from human liver, brain, kidney, atrial and ventricular tissues revealed that ATN mRNA exists in cardiac ventricule.Immunohistochemical studies using a specific antibody to ATN revealed a stronger reaction in the endocardial layer of the human left ventricle, than in the epicardial layer, and intense immunoreactivity in the conduction system and right atrium. This distribution pattern was similar to that of human atrial natriuretic peptide (hANP), which functions a smooth muscle relaxant. Double immunostaining of ATN and hANP demonstrated that all myocytes in the right atrium had immunopositive reactions to ATN, hANP or both of ATN and hANP. Double immunoelectron staining enabled us to show more detailed localization of ATN and hANP; hANP only existed in the specific granules and ATN existed in the myofibril, but not in the granule. Furthermore, our experiments provide evidence of ATN in healthy human hearts and also reveal a widespread immunopositive reaction for ATN in the left ventricle of diseased hearts.  相似文献   

10.
Stored cardiac pro-atrial natriuretic peptide (pro-ANP) is converted to ANP and released upon stretch from the atria into the circulation. Corin is a serin protease with pro-ANP-converting properties and may be the rate-limiting enzyme in ANP release. This study was aimed to clone and sequence corin in the rat and to analyze corin mRNA expression in heart failure when ANP release upon stretch is blunted. Full-length cDNA of rat corin was obtained from atrial RNA by RT-PCR and sequenced. Tissue distribution as well as regulation of corin mRNA expression in the atria were determined by RT-PCR and RNase protection assay. Heart failure was induced by an infrarenal aortocaval shunt. Stretch was applied to the left atrium in a working heart modus, and ANP was measured in the perfusates. The sequence of rat corin cDNA was found to be 93.6% homologous to mouse corin cDNA. Corin mRNA was expressed almost exclusively in the heart with highest concentrations in both atria. The aortocaval shunt led to cardiac hypertrophy and heart failure. Stretch-induced ANP release was blunted in shunt animals (control 1,195 +/- 197 fmol.min(-1).g(-1); shunt: 639 +/- 99 fmol.min(-1).g(-1), P < 0.05). Corin mRNA expression was decreased in both atria in shunt animals [right atrium: control 0.638 +/- 0.004 arbitrary units (AU), shunt 0.566 +/- 0.014 AU, P < 0.001; left atrium: control 0.564 +/- 0.009 AU, shunt 0.464 +/- 0.009 AU, P < 0.001]. Downregulation of atrial corin mRNA expression may be a novel mechanism for the blunted ANP release in heart failure.  相似文献   

11.
The localization of the sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart were investigated through retrograde axonal transport with horseradish peroxidase (HRP). HRP (4 mg or 30 mg) was injected into the subepicardial and myocardial layers in four different cardiac regions. The animals were euthanized 84-96 hours later and fixed by paraformaldehyde perfusion via the left ventricle. The brain stem and the paravertebral sympathetic ganglia from the superior cervical, middle cervical, and stellate ganglia down to the T9 ganglia were removed and processed for HRP identification. Following injection of HRP into the apex of the heart, the sinoatrial nodal region, or the right ventricle, HRP-labeled sympathetic neurons were found exclusively in the right superior cervical ganglion (64.8%) or in the left superior cervical ganglion (35%). Fewer labeled cells were found in the right stellate ganglia. After HRP injection into the left ventricle, labeled sympathetic cells were found chiefly in the left superior cervical ganglion (51%) or in the right superior cervical ganglion (38.6%); a few labeled cells were seen in the stellate ganglion bilaterally and in the left middle cervical ganglion. Also, in response to administration of HRP into the anterior part of the apex, anterior middle part of the right ventricle, posterior upper part of the left ventricle, or sinoatrial nodal region, HRP-labeled parasympathetic neurons were found in the nucleus ambiguus on both the right (74.8%) and left (25.2%) sides. No HRP-labeled cells were found in the dorsal motor nucleus of the vagus on either side.  相似文献   

12.
13.
14.
15.
Sarcoplasmic reticulum (SR)-mediated Ca(2+) sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca(2+) release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction (+dP/dt(max)) and a 24% reduction in the maximum speed of relaxation (-dP/dt(max)). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of ryanodine administration the animals had developed a significant cardiac hypertrophy that was most prominent in both atria (right atrium +115%, left atrium +100%, right ventricle +23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in beta-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca(2+) mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.  相似文献   

16.
Hyperthyroidism has been associated with atrial fibrillation (AF); however, hyperthyroidism-induced ion channel changes that may predispose to AF have not been fully elucidated. To understand the electrophysiological changes that occur in left and right atria with hyperthyroidism, the patch-clamp technique was used to compare action potential duration (APD) and whole cell currents in myocytes from left and right atria from both control and hyperthyroid mice. Additionally, RNase protection assays and immunoblotting were performed to evaluate the mRNA and protein expression levels of K(+) channel alpha-subunits in left and right atria. The results showed that 1) in control mice, the APD was shorter and the ultra-rapid delayed rectifier K(+) conductance (I(Kur)) and the sustained delayed rectifier K(+) conductance (I(ss)) were larger in the left than in the right atrium; also, mRNA and protein expression levels of Kv1.5 and Kv2.1 were higher in the left atrium; 2) in hyperthyroid mice, the APD was shortened and I(Kur) and I(ss) were increased in both left and right atrial myocytes, and the protein expression levels of Kv1.5 and Kv2.1 were increased significantly in both atria; and 3) the influence of hyperthyroidism on APD and delayed rectifier K(+) currents was more prominent in right than in left atrium, which minimized the interatrial APD difference. In conclusion, hyperthyroidism resulted in more significant APD shortening and greater delayed rectifier K(+) current increases in the right vs. the left atrium, which can contribute to the propensity for atrial arrhythmia in hyperthyroid heart.  相似文献   

17.
《The Journal of cell biology》1993,120(5):1137-1146
Calcium release from intracellular stores is the signal generated by numerous regulatory pathways including those mediated by hormones, neurotransmitters and electrical activation of muscle. Recently two forms of intracellular calcium release channels (CRCs) have been identified. One, the inositol 1,4,5-trisphosphate receptors (IP3Rs) mediate IP3-induced Ca2+ release and are believed to be present on the ER of most cell types. A second form, the ryanodine receptors (RYRs) of the sarcoplasmic reticulum, have evolved specialized functions relevant to muscle contraction and are the major CRCs found in striated muscles. Though structurally related, IP3Rs and RYRs have distinct physiologic and pharmacologic profiles. In the heart, where the dominant mechanism of intracellular calcium release during excitation-contraction coupling is Ca(2+)-induced Ca2+ release via the RYR, a role for IP3-mediated Ca2+ release has also been proposed. It has been assumed that IP3Rs are expressed in the heart as in most other tissues, however, it has not been possible to state whether cardiac IP3Rs were present in cardiac myocytes (which already express abundant amounts of RYR) or only in non- muscle cells within the heart. This lack of information regarding the expression and structure of an IP3R within cardiac myocytes has hampered the elucidation of the significance of IP3 signaling in the heart. In the present study we have used combined in situ hybridization to IP3R mRNA and immunocytochemistry to demonstrate that, in addition to the RYR, an IP3R is also expressed in rat cardiac myocytes. Immunoreactivity and RNAse protection have shown that the IP3R expressed in cardiac myocytes is structurally similar to the IP3R in brain and vascular smooth muscle. Within cardiac myocytes, IP3R mRNA levels were approximately 50-fold lower than that of the cardiac RYR mRNA. Identification of an IP3R in cardiac myocytes provides the basis for future studies designed to elucidate its functional role both as a mediator of pharmacologic and hormonal influences on the heart, and in terms of its possible interaction with the RYR during excitation- contraction coupling in the heart.  相似文献   

18.
This report is intended as an overview of the distribution, origin and sensitivity to capsaicin of substance P-immunoreactive (SP-I) primary afferent cardiac nerves. Immunohistochemical and physiological methods were employed to compare the presence and density of these nerve fibers in the guinea pig and rat hearts. SP-I fibers are numerous in the guinea pig heart including the parietal pericardium, atria, ventricles, valves, coronary arteries and around intrinsic cardiac ganglion cells. The rat heart contains few SP-I fibers. Vagotomy does not influence the number of intensity of immunoreactive fibers in the guinea pig heart. By stimulating the atrium or ventricle and recording from the second or third thoracic dorsal roots Ad1, Ad2 and C fibers were demonstrated in the atria, but only Ad fibers in the guinea pig ventricle; in addition, only Ad fibers were recorded from the vagus nerves. Only Ad1 fibers were demonstrated in the rat heart. Treatment with capsaicin depletes the SP-I and decreases the conduction velocity of C-fibers and some Ad2 fibers in the guinea pig heart. We suggest that SP-I primary afferent nerve fibers are unmyelinated (C-type) or small myelinated (Ad2-type) nerves in the guinea pig heart and that their cell bodies of origin are predominantly in dorsal root ganglia.  相似文献   

19.
To establish whether a hemodynamic load that causes cardiac hypertrophy in the intact animal might interact with cellular pathways that are thought to transduce growth signals in model systems, we have analyzed expression of the cellular oncogene, c-myc, after a systolic pressure load. Aortic constriction increased c-myc mRNA abundance in both the atria and left ventricle of 28-day rats, but did not activate a second "competence" gene, r-fos, whose expression by cardiac cells ceases upon termination of mitotic growth. In 80-day rats, c-myc was induced in the atria alone. Induction of c-myc by aortic constriction in vivo may correlate with the respective capacity of atrial and ventricular myocytes to replicate DNA during cardiac hypertrophy. Activation of c-myc was not sufficient to account for inhibition of muscle creatine kinase (mck) mRNA, which was decreased only in 28-day rats.  相似文献   

20.
In previous studies, regional variations in the expression of the Na+-Ca2+ exchanger (NCX) have been examined qualitatively in human heart using the C2C12 monoclonal antibody [Wang, J., Schwinger, R.H., Frank, K., Muller-Ehmsen, J., Martin-Vasallo, P., Pressley, T.A., Xiang, A., Erdmann, E. & McDonough, A.A. (1996) J. Clin. Invest. 98, 1650-1658]. Although NCX expression was found to be significantly lower in the atria compared to the septum, no significant differences were found between atrial and ventricular tissue. NCX has been located in the general sarcolemma and t-tubules of ventricular muscle and as t-tubules are sparse in atrial tissue compared to ventricular tissue, it is surprising that NCX expression was found to be similar in both atria and ventricles [Wang et al. (1996)]. To reinvestigate this, we have used SDS/PAGE and a quantitative Western blotting technique to determine the pattern of expression of NCX in guinea-pig heart in tissue samples from left atrium, right atrium, septum, left ventricle and right ventricle. NCX protein expression was 17.5 +/- 3.9 pmol.mg-1 of protein in the left atrium and 29.2 +/- 6.1 pmol.mg-1 of protein in the right atrium, which were both significantly lower (P < 0.05) than NCX expression in the septum, left ventricle and right ventricle (64.7 +/- 15.2, 76.8 +/- 19.5 and 69.4 +/- 14.1 pmol.mg-1 of protein, respectively, n = 7). These differences in NCX expression may reflect variations in the cellular location of NCX protein in these regions. To study this, we used confocal immunofluorescence of single isolated myocytes to examine differences in the proportion of fluorescent staining on the general surface membrane compared with the interior of the cell (which presumably reflects a t-tubular location). We found that the general membrane staining was 79.0 +/- 1.2% in cells from the atria which was significantly higher (P < 0. 001) than that seen in cells from the septum, left ventricle and right ventricle, with 48.1 +/- 1.1%, 48.2 +/- 1.8% and 45.6 +/- 1.3%, respectively (n = 20). These results illustrate a similar pattern of NCX expression in guinea-pig and human, with expression in atrial tissue significantly lower than in ventricular tissue. However, the cellular location of NCX differs regionally; in atrial tissue, the majority of the NCX protein is located in the general sarcolemma whereas in ventricular and septal tissue, approximately 50% of NCX protein is located within the cell (presumably at the level of the t-tubules).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号