首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the variability in the composition and distribution of Pacific Late Miocene calcareous nannoplankton about their average biogeography shows that there are primarily two environmental factors causing that variability, climate and dissolution. Climate produces a latitudinal, biogeographic differentiation of the Late Miocene nannoflora, while selective dissolution superimposes a bathymetric differentiation of the nannoflora on that due to climate. Together, these two factors produce three distinct Late Miocene nannofloral assemblages, a high-latitude, temperate assemblage characterized by Reticulofenestra pseudoumbilica and Coccolithus pelagicus, and two tropical assemblages, their differences in composition depending on water depth and surface-water productivity: (1) in shallower water and beneath areas of higher organic production and sedimentation of calcite there is an undissolved assemblage characterized by sphenoliths, small elliptical placoliths and Coccolithus pataecus; (2) in deeper water and areas of lower productivity there is a dissolved assemblage dominated by discoasters.Selective dissolution produces most of the apparent biogeographic variation in Pacific Late Miocene nannoplankton compositions, the variation in compositions observed between the seventeen sites studied. Dissolution preferentially removes the more soluble constituents of the tropical nannoflora so that increasing dissolution tends to give tropical nannoflora a cooler, more temperate aspect. At the same time, selective dissolution shifts the composition of the warmer, tropical component towards its more resistant taxa.Nannoplankton records show a period of greatly decreased calcite dissolution in deep tropical and temperate South Pacific sites between about 8 and 10 m.y. ago. This decrease is strongly correlated with a temporary increase in the 13C composition of Pacific deep waters. Calcite dissolution increased during this same period in the deep North Pacific.Nannoplankton records of Late Miocene climate in the tropics are distinctly different from those at higher, south temperate latitudes. Tropical records show a sharp warming in the earliest Late Miocene after a generally cool late Middle Miocene. This was followed by a temporary cooling, nearly to Middle Miocene levels, about 7 m.y. ago. Toward the end of the Late Miocene, the tropical Pacific warmed again and remained warm into the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern temperate latitudes warm appreciably. Southern subpolar climate cooled continuously through the Late Miocene. We attribute the resulting increases in the latitudinal climatic contrast across the southern Pacific Ocean to the development and migration of a strong subtropical convergence.On the basis of the nannoplankton oceanographic records we postulate that beginning about 10.5 m.y. ago Pacific surface circulation became primarily zonal and the production of deep and bottom waters in the Southern Ocean increased sharply. This produced a northward decrease in calcite preservation, an increase in benthic 13C, and a strong climatic gradient across southern latitudes. The period of most vigorous deep Pacific circulation ended 7 m.y. ago in response, we speculate, to the reduced ocean salinities during the Messinian.  相似文献   

2.
The possibility of a Middle-Late Miocene separation of the human lineage from the lineages leading to the extant great apes, based on paleontological and phenetic evidence, is presented. Middle Miocene Sivapithecus, rather then Early Miocene Dryopithecus, is supported as a last common ancestor of Pongo, Pan, Gorilla, and Homo. Estimates for the branching of the lineages are a maximum of 15 m.y.a. for the Pongo lineage and a range from 14-6 m.y.a. for the Pan, Gorilla, and Ausralopithecus/Homo lineages. Weaknesses of the late divergence hypothesis are discussed.  相似文献   

3.
Changes in the Miocene deep-sea benthic foraminifera at DSDP Site 289 closely correlate to the climatically induced variations in deep and bottom waters in the Pacific Ocean. In early Miocene time, oxygen and carbon isotopes indicate that bottom waters were relatively warm and poorly oxygenated. Benthic foraminiferal assemblages are characterized by various species inherited from the Oligocene. Expansion of the Antarctic icecap in the early middle Miocene, 14–16 m.y. ago, increased oxygen isotope values, produced cold, more oxygenated bottom waters and lead to a turnover in the benthic foraminifera. An Oligocene—early Miocene assemblage was replaced by a cibicidoid-dominated assemblage. Some species became extinct and benthic faunas became more bathymetrically restricted with the increased stratification of deep waters in the ocean. In mid-Miocene time, Epistominella exigua and E. umbonifera, indicative of young, oxygenated bottom waters, are relatively common at DSDP Site 289. Further glacial expansion 5–9 m.y. ago lowered sealevel, increased oceanic upwelling and associated biological productivity and intensified the oxygen minima. Abundant hispid and costate uvigerines become a dominant faunal element at shallow depths above 2500 m as E. umbonifera becomes common to abundant below 2500 m. By late Miocene time, benthic faunas similar in species composition and proportion to modern faunas on the Ontong-Java plateau, had become established.  相似文献   

4.
Abstract

The Neogene snake fauna from the central and eastern regions of Eurasia is still largely unknown. This paper reports on a unique snake fauna from the late middle Miocene of the Baikadam and Malyi Kalkaman 1 and 2 localities, northeastern Kazakhstan, which represents the best-documented Miocene snake assemblage in Central Asia. Previous studies admitted that snake fauna could be homogeneous over a large part of Eurasia during the Miocene, with the late middle to early late Miocene assemblages similar to snake assemblages that inhabited Europe in the late early and early middle Miocene. This assumption is partially supported by the presence of Texasophis bohemiacus and Coluber cf. hungaricus, as well as vipers of the ‘V. aspis’ complex. However, the presence of taxa which are (1) probably not related to European representatives (‘Colubrinae’ A and B), (2) probably never occurred in Central and Western Europe and (3) are closely related to species recently inhabiting southern Siberia (Elaphe aff. dione, Gloydius sp.) indicates that faunal dissimilarity was relatively high within Eurasia during the late middle Miocene. This assumption is in accordance with studies of small mammal assemblages which show a decreasing homogenity in the Eurasia in the course of the middle Miocene.  相似文献   

5.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

6.
The snake-eyed lizards of the genus Ophisops (Lacertidae) have been through a series of taxonomical revisions, but still their phylogenetic relationships remain uncertain. In the present study we estimate the phylogeographic structure of O. elegans across its distributional range and we evaluate the relationships between O. elegans and the sympatric, in North Africa, species O. occidentalis, using partial mtDNA sequences (16S rRNA, COI, and cyt b). All phylogenetic analyses produced topologically identical trees where extant populations of O. elegans and O. occidentalis were found polyphyletic. Taking into account all the potential causes of polyphyly (introgressive hybridization, incomplete lineage sorting, and imperfect taxonomy) we suggest the inaccurate taxonomy as the most likely explanation for the observed pattern. Our results stress the need for re-evaluation of the current taxonomical status of these species and their subspecies. Furthermore, our biogeographic analyses and the estimated time of divergences suggest a late Miocene diversification within these species, where the present distribution of O. elegans and O. occidentalis was the result of several dispersal and vicariant events, which are associated with climatic oscillations (the late Miocene aridification of Asia and northern Africa) and paleogeographic barriers of late Miocene and Pliocene period.  相似文献   

7.
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species.  相似文献   

8.
A new late Hemphillian (late Miocene) rodent assemblage is reported from Zwiebel Channel, a channel cut into underlying Ash Hollow Miocene sediments along Sand Draw, Brown County, Nebraska. This locality extends the temporal range of rodent history in the Sand Draw area. A new biostratigraphic hypothesis proposes that previously described assemblages with Ogmodontomys are older than those with Ophiomys, as is the case in the Meade Basin of southwestern Kansas. Consequently, two Pliocene temporal zones are recognised. Based on a phylogenetic analysis of Ophiomys, rodent biostratigraphy, and paleomagnetic profiles, Sand Draw assemblages with Ogmodontomys are considered to have been deposited about 3.0–2.8 Ma, while those with Ophiomys were laid down between about 2.8–2.5 Ma. The 1.6 Ma date previously suggested for Ophiomys parvus from Froman Ferry, Idaho is probably too young; it is more likely that O. parvus became extinct in Idaho prior to the North American Microtus immigration event at about 2.0 Ma, inhabiting the Snake River basin until around 2.2 Ma.  相似文献   

9.
The Cape Roberts Project (CRP) recovered a composite Eocene to lower Miocene stratigraphic sequence from the Victoria Land Basin, Antarctica, which includes four new species, described herein, of the biostratigraphically useful fossil marine diatom genus Kisseleviella. Specimens of this extinct genus occur predominantly in neritic sediments, which along with the chain-forming nature and morphological similarity to extant benthic genera (e.g. Cymatosira) suggest that Kisseleviella was tychopelagic. The species of Kisseleviella described here appear to be endemic to the Antarctic region with an ecological preference for nearshore environments. The polythermal, subpolar glacial regime invoked for the late Eocene–early Miocene may have acted as a significant driver of speciation events in Antarctic Kisseleviella. Phylogenetic analysis of fossil genera such as Kisseleviella allows the development of a neritic biostratigraphic zonation. New taxa formally proposed are: Kisseleviella tricoronata, Kisseleviella cicatricata, Kisseleviella gaster and Kisseleviella faballiforma.  相似文献   

10.
Extant clades may differ greatly in their species richness, suggesting differential rates of species diversification. Based on phylogenetic trees, it is possible to identify potential correlates of such differences. Here, we examine species diversification in a clade of 82 tropical African forest butterfly species (Cymothoe), together with its monotypic sister genus Harma. Our aim was to test whether the diversification of the HarmaCymothoe clade correlates with end‐Miocene global cooling and desiccation, or with Pleistocene habitat range oscillations, both postulated to have led to habitat fragmentation. We first generated a species‐level phylogenetic tree for Harma and Cymothoe, calibrated within an absolute time scale, and then identified temporal and phylogenetic shifts in species diversification. Finally, we assessed correlations between species diversification and reconstructed global temperatures. Results show that, after the divergence of Harma and Cymothoe in the Miocene (15 Mya), net species diversification was low during the first 7 Myr. Coinciding with the onset of diversification of Cymothoe around 7.5 Mya, there was a sharp and significant increase in diversification rate, suggesting a rapid radiation, and correlating with a reconstructed period of global cooling and desiccation in the late Miocene, rather than with Pleistocene oscillations. Our estimated age of 4 Myr for a clade of montane species corresponds well with the uplift of the Eastern Arc Mountains where they occur. We conclude that forest fragmentation caused by changing climate in the late Miocene as well as the Eastern Arc Mountain uplift are both likely to have promoted species diversification in the Harma–Cymothoe clade. Cymothoe colonized Madagascar much later than most other insect lineages and, consequently, had less time available for diversification on the island. We consider the diversification of Cymothoe to be a special case compared with other butterfly clades studied so far, both in terms of its abrupt diversification rate increase and its recent occurrence (7 Myr). It is clear that larval host plant shift(s) cannot explain the difference in diversification between Cymothoe and Harma; however, such a shift(s) may have triggered differential diversification rates within Cymothoe. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●● , ●●–●●.  相似文献   

11.
Two 305 m cored sections from the northwest Florida continental shelf contain a nearly complete record of late Neogene hemipelagic sedimentation. One of the sites, south and east of De Soto Canyon, is isolated from terrigenous sediment except for sediment transported in suspension. This site contains a continuous record from the late Miocene to the Recent. The second site, on the western rim of De Soto Canyon, is more expanded and continuous from the late Pliocene to the Recent. A hiatus separates the late Pliocene from the middle Miocene. Six prominent nannofossil biohorizons were recognized within the Pleistocene, seven within the Pliocene, and three within the Miocene; in addition one biohorizon marks the base of the Pleistocene and another the base of the Pliocene.Nearly all carbonate in the sediment is pelagic. Terrigenous detrital sedimentation was controlled by glacioeustatic sea level fluctuations during the Pleistocene, and sea level changes are probably responsible for fluctuations in the ratio of pelagic carbonate to clayey detritus in pre-Pleistocene sediments also. Carbonate content, coarse fraction percent, and relative abundances of environmentally sensitive nannoplankton species suggest important paleoceanographic changes in the northeastern Gulf of Mexico and adjacent areas. Fluctuations in the relative abundance of the solution-resistant coccoliths of the genusCyclococcolithus indicate that waters at a depth of 600–1000 m were more corrosive during the late Miocene than they are today. The decrease in carbonate dissolution during the late Miocene probably was a response to gradual constriction of the Central American passage and the consequent restriction of flow of corrosive water from the Pacific. Short term fluctuations in dissolution during the Pliocene and Pleistocene are related to climatic cycles.Productivity variations in the surface waters, recorded mainly by the relative abundance of small and large morphotypes of closely related coccolith species, indicate that productivity increased during the Pliocene, but the most dramatic change — a major oceanwide increase in productivity — occurred during the Pleistocene, during and just prior to the Jaramillo magnetic event about 0.9 m.y. ago. Surprisingly the late Miocene Messinian event did not leave a significant imprint in the northeastern Gulf of Mexico.  相似文献   

12.
The East African fossil record of cercopithecoids spans nearly 20 m. y. Throughout the Miocene Epoch, the diversity of monkeys was low, although at some localities the numbers of individuals is rather high. During the Plio-Pleistocene in contrast, there was a major radiation, or radiations of monkeys, involving both colobines and corcopithecines. A late Pleistocene to Recent radiation within the genusCercopithecus still seems to be under way. The history of diversity in the monkeys is in many ways a chronological inverted mirror image of the diversity history of the hominoid primates, which were highly diverse during the lower miocene, but became less diverse through time. The east african cercopithecoid record is the only one which spans much of the Neogene, and it is consequently the main one by which detailed cercopithecoid cladogenetic and anagenetic events can be dated. In this respect, it provides constraints for interpreting branching schemes derived from neontological evidence. Most of the neontological estimates for monkey origins appear to be too old, the fossil evidence suggesting that the origin of the superfamily Cercopithecoidea and the origins of the Colobinae, Papionini and Cercopithecini are younger than usually suggested on neontological evidence. The superfamily is probably no older than 25 m. y., the colobines diverged as a distinctive group about 12–14 m. y. ago, the Papionines about 8–10 m. y. ago and the Cercopithecines perhaps as late as 7 m. y. However, since the Miocene fossil record is rather spotty, these fossil-based estimates may be revised downwards with new discoveries. They are unlikely to be revised upwards. The sequence and timing of cladogenetic events deduced from the east african evidence indicates that all the modern subfamilies arose in Africa, and subsequently spread to Europe and Asia. The sequence of fossil events is in close agreement with neontological evidence such as karyology and molecular anthropology. It is only in the calibration of the sequence that there is disagreement between the fossil and neontological evidence. Strangely, the polarity of the differences in opinion are opposite to those concerning the hominoids, in which the neontological evidence has suggested much younger divergence dates than did the fossil evidence as perceived in the 1960's and 1970's.  相似文献   

13.
Fossil cercopithecoid material from Ngeringerowa, Ngorora, and Nakali, dated at between 8.5 and 10.5 m.y., is described. The specimens are the only cercopithecoid remains dated between 15 and 6 m.y. from sub-Saharan Africa. The mandible of asmall colobine from Ngeringerowa (similar in size to Colobus verus) is assigned to a new genus and species, Microcolobus tugenensis. Unlike other colobine genera, the symphysis of Microcolobus lacks an inferior transverse torus. A colobine lower M1 or 2 from Nakali is longer and narrower than molars of M. tugenensis, indicating that it may belong to a distinct taxon. A P4 from Ngorora cannot be assigned confidently to subfamily, due to its unique metaconid morphology. The relationship between the new genus and other Miocene monkeys is considered.  相似文献   

14.
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified.Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in δ18O values coded as “Oi” and “Mi” events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific.Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.We also reviewed changes in other microfossil assemblages in the low latitudes during the late Oligocene through early Miocene. The microfossil assemblages of major groups show sequential changes near the Oligocene/Miocene (O/M) boundary (23.8 Ma). Many extinction events and some first occurrences of calcareous nannofossils and many occurrences of radiolarians are found from about 24.8 to 23.3 Ma, and first occurrences of planktic foraminifers and diatoms followed from 23.2 through 22 Ma. Hence, the O/M boundary is identified as a significant level for microfossil evolutions.  相似文献   

15.
This paper describes the first fossil porcupine remains from Iran. Four upper cheek teeth and two fragmentary lower incisors present sufficient characters for identification as Hystrix aryanensis, a species previously known from the late Miocene locality of Molayan (Afghanistan) estimated at ca. 7–8 Ma. The dental features of porcupines are discussed to show their systematic value and highlight evolutionary trends in late Miocene and Pliocene porcupines. This study also discusses the dispersal history of fossil porcupines in relation to paleobiogeographic provinces and environmental changes during late Miocene to late Pliocene time.  相似文献   

16.
The paucity of late Paleogene and Neogene floras from Antarctica limits our ability to understand the interplay between Antarctic climate evolution and the impact that glaciation had on the vegetation, in particular, how the vegetation changed from temperate Eocene forests, to today’s sparse vegetation. Fluvial and lacustrine strata deposited in a wet-based glacial sequence (Friis Hills, McMurdo Dry Valley sector, Transantarctic Mountains) have yielded abundant megaspores. These strata are early Miocene based on correlation with a volcanic ash dated at 19.76 ± 0.11 Ma. The megaspores are up to 736 µm in diameter with well-developed wing-like laesurae and equatorial zona. The morphology is consistent with extant Isoetes, and demonstrates the presence of Lycopsida and the Isoetaceae within Antarctic Miocene floras. Today, Isoetes is widespread from the Tropics to the Arctic such as Greenland (I. echinospora, I. lacustris) and from marginal marine (I. ekmanii) to high altitudinal environments (I. lechleri), though commonly associated with lacustrine or aquatic environments. The fossil spores occur in fluvial and lacustrine beds, suggesting the parent plants were aquatics. The occurrence together with mosses and Nothofagus leaves points to persistent vegetation in the early Miocene of Antarctica.  相似文献   

17.
Phylo-zonations (or lineage-zonations) are based upon morphological changes within individual evolutionary lineages. These zonations, although potentially of use for stratigraphic subdivision and correlation, often suffer from a lack of quantitative exactness in the definitions of chronospecies. Thus exact reproducibility is hindered for stratigraphic determinations.The potential of morphometrically defined phylo-zonations is demonstrated on a temperate South Pacific Late Cenozoic lineage of planktonic foraminifera (Globorotalia conoidea through intermediate forms to Globorotalia inflata in DSDP Site 284) exhibiting phyletic gradualism. Our sampling interval is about 0.1 m.y. during the last 8 m.y. Changes in the number of chambers in the final whorl, test conicalness, percentage of keeled forms, and test roundness or inflatedness, are used to quantitatively define the following five chronospecies: G. conoidea (Late Miocene; 6.1–>8.3 m.y.), G. conomiozea (latest Miocene; 5.3–6.1 m.y.), G. puncticulata sphericomiozea (earliest Pliocene; 4.5–5.3 m.y.), G. puncticulata puncticulata (Early-Middle Pliocene; 2.9–4.5 m.y.), and G. inflata (Late Pliocene-Quaternary; 0–2.9 m.y.). This phylo-zonation is directly applicable to temperate cool subtropical Southern Hemisphere areas where the evolution took place (Kennett, 1967, 1973; Scott, 1979). It is still not known if the lineage occurs elsewhere; thus the applicability of the phylo-zonation over broader areas is still uncertain. Trends in general size and aperture shape seem to be climatically controlled, and thus may be only of local stratigraphic utility.The practical applications of morphometric phylo-zonation for stratigraphy is to a large extent dependent upon the amount of time and effort required to statistically define the trends. Experiments with large numbers of subsamples from this lineage demonstrate that accurate stratigraphic determinations are possible from measurements on only 15 specimens per sample, except for those very close to chronospecies boundaries.  相似文献   

18.
A large number of plant macrofossils from several Middle to Upper Miocene localities from Iceland have been studied. The fossil material includes four ferns and fern allies, seven conifers, and about 40 species of flowering plants. Betula islandica and Salix gruberi are described as new species. Coniferous twigs previously ascribed to the genus Sequoia are shown to belong to Cryptomeria based on macro‐morphological and epidermal features. Fossil plants from Iceland are compared with coeval fossil taxa from Europe and North America and with living plants. The main finding is that the Miocene flora of Iceland belongs to a widespread Neogene northern hemispheric floral type including plants whose representatives are restricted to East Asia, North America and to western Eurasia at the present time. Previously inferred conspicuous similarities to North American modern equivalents appear to be misleading. The type of vegetation in four plant‐bearing sedimentary formations from the late Mid Miocene to Late Miocene, the 12 Ma Brjánslækur‐Seljá Formation, the 10 Ma Tröllatunga‐Gautshamar Formation, the 9–8 Ma Skarðsströnd‐Mókollsdalur Formation, and the 7–6 Ma Hreðavatn‐Stafholt Formation, corresponds to a humid temperate broadleaved (deciduous)–coniferous mixed forest dominated by Betulaceae, Fagaceae and Acer. Changes in species composition in the sedimentary formations reflect a shift from warm temperate (Cfa climate) to cool temperate (Cfb climate) conditions from the late Mid Miocene to the latest Miocene. This shift was connected to repeated phases of extinction and colonization. Specifically, one set of thermophilic taxa including Magnolia, Liriodendron, Sassafras and Comptonia went extinct between 12 and 10 Ma, and appears to have been replaced by another set of thermophilic taxa in the 10 Ma formation (Juglandaceae aff. Pterocarya/Cyclocarya, Rhododendron ponticum type). The 9–8 and 7–6 Ma formations are characterized by taxa that migrated to Iceland from Europe, such as Fagus gussonii, Betula cristata and Pterocarya fraxinifolia type. Although there is convincing evidence that plants colonized Iceland both from North America and Europe until 12 Ma, migration in the younger formations (9–8, 7–6 Ma) is suggested to have occurred mainly from Europe. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 369–417.  相似文献   

19.
Detailed palaeontological analyses of the hominoids of the Miocene indicate the occurrence of forms belonging to Pongidae and Hominidae. Of these, Sivapithecus (Pongidae) with three contained species and Ramapithecus (Hominidae) with two distinct species can be recognized. These two families Pongidae and Hominidae were sufficiently well defined and distinct by the late Miocene about 14 million years ago. The author has discussed in brief the status of a few interesting finds of Sivapithecus and Ramapithecus based on the study of the originals preserved in India and America.  相似文献   

20.
Abstract

A contribution to the fossil Silicoflagellates of the late Miocene in Central Italy. - A microscopic analysis of fourteen diatomite samples from a Messinian (late Miocene) stratigraphic series, in central-eastern Italy, has been carried out in order to verify the presence of Silicoflagellates. The skeletons of eight taxa were found in good condition and identified. The most abundant and continuous in the stratigraphic series examined are Dictyocha fibula and Distephanus speculum, also known in the present-day seas; Cannopilus sphaericus, a very rare and interesting species extinct in the Miocene, is limited to only two samples. On the basis of the Silicoflagellates found, it is possible to suggest that they lived in an open sea with 30–40‰ salinity and a temperature of 10–20°C. A very similar situation is present nowadays in the middle-western Adriatic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号