首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Selective grazing of adults and larvae of the zebra mussel (Dreissena polymorpha) on phytoplankton and detritus from both laboratory cultures and natural seston was quantified using flow cytometry. 2. Mean clearance rate of adult zebra mussels was higher on a mixture of the green alga Scenedesmus and the cyanobacterium Microcystis than when Scenedesmus was offered as single food, suggesting selective feeding by the mussels. 3. Feeding on lake seston both adults and larvae showed a higher clearance rate on phytoplankton than on detritus particles, suggesting that zebra mussels select for phytoplankton. Furthermore, it was noted that adults preferred seston particles in the 0–1 and 30–100 μm size ranges. 4. In our study, zebra mussels did not discriminate against cyanobacteria, and our results indicate that they may even ingest them preferentially.  相似文献   

2.
Complex habitat structures can influence the foraging success of fish. Competition for food between fish species can therefore depend on the competitors' abilities to cope with structural complexity. In laboratory experiments, we comparatively assessed effects of zebra mussels (Dreissena polymorpha Pall .) on the foraging success of Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)). In single‐species and mixed‐species experiments, the fish were fed caddisfly larvae (Tinodes waeneri (L.)) over complex (mussel‐covered stones) and less‐complex (bare stones) substrates. With intraspecific competition, food consumption by perch and ruffe decreased significantly when the complex substrate was used. With interspecific competition, food consumption by perch and ruffe did not change with substrate complexity, but perch clearly out‐competed ruffe on both substrates. Zebra mussel beds provide a refuge for macrozoobenthos against predation by ruffe and probably also by perch. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Invasive zebra mussels (Dreissena polymorpha) often colonize dragonfly larvae, especially spawling species whose survivorship to emergence as terrestrial predators is consequently reduced. Using individuals of the sprawler, Macromia illinoiensis, as their own controls, we compared the burying behavior of penultimate instar larvae before (i.e. baseline) and after their colonization by zebra mussels under ambient conditions. Individuals that took longer to bury themselves when mussel-free had a higher rate of colonization by mussels over a five-day period compared to those that buried faster. In contrast, the depth at which individuals buried when mussel-free was not predictive of subsequent colonization rate. Although mean bury time did not differ between baseline and when an individual carried one or more mussels, colonized larvae buried more shallowly than when mussel-free. Moreover, attached mussels increased the risk of subsequent colonization by zebra mussels. After naturally losing all of their attached mussels, bury time and depth of individuals did not differ from their baseline behavior, indicating that the changes in the behavior of colonized individuals were due to mussel loads and not their time in captivity. Under natural conditions, the positive feed-back between mussel attachment and increasing vulnerability to colonization helps explain how mussel loads, which are lost at molting, can accumulate quickly over the duration of the final larval stadium. Because zebra mussel attachment decreases the crypsis that that a M. illinoiensis gains from burying, the invasive mussel may also make dragonfly larvae more detectable to visual predators.  相似文献   

4.
Samples of Dreissena polymorpha were collected at several sites along the River Shannon navigation in Ireland, to determine the occurrence and distribution of their obligate host-specific commensalistic ciliate, Conchophthirus acuminatus, in this newly invaded region. Mussels collected by various methods were fixed immediately in 75% ethanol, in which they were later dissected under a stereoscopic microscope, beginning with thorough flushing of the mantle cavity and removal of the gills. One ml of sediment flushed from the mantle cavity and dissection residue of each mussel was examined under a compound light microscope using brightfield, phase-contrast, and differential-interference-contrast optics. Of 180 mussels examined, 125 (69.44%) harbored C. acuminatus. The ciliates were invariably well fixed and easily identifiable in all preparations. Mean sampling intensity for infected mussels was 8.47 ciliates per ml of sediment. Both prevalence and sampling intensity varied between sites, but no pattern was discernible. The present results are consistent with other reports of C. acuminatus being the most widespread and abundant symbiont of D. polymorpha throughout Europe, often occurring where no other symbionts occur. Its occurrence in Ireland indicates introduction of the mussels as adults, since planktonic veliger larvae are not known to harbor ciliates. Following similar reasoning, it is possible that the earlier North American invasion by D. polymorpha included only veligers, since C. acuminatus has not been found on that continent. Using these simple and quick methods, the ciliates could be easily identified and counted to give general comparative data among sites regarding intensity and prevalence. Thus, this method has promise for future efforts to obtain basic information rapidly in newly invaded systems.  相似文献   

5.
6.
1. Larvae of Macromia illinoiensis Walsh are often colonised by the zebra mussel, Dreissena polymorpha Pallas, a recent invader to North America. To determine how mussel attachment affects an individual's foraging behaviour, we quantified capture of Hexagenia limbata Hexes mayfly prey and the distance moved by newly‐molted final instars before and after an individual's colonisation with zebra mussels. 2. In night trials, larvae sprawled above the sand, and caught more mayflies than individuals in daytime trials, but the estimated distance travelled did not differ. When resting under a layer of sand with only its eyes exposed during the day, an individual could capture a mayfly prey using a sit‐and‐wait ambush strategy. When sprawled above the sand, some larvae caught prey that rested on their legs. 3. When mussel‐free, individuals captured more prey than they did when carrying zebra mussels, although mussel attachment per se did not affect the estimated distance that a larva moved. 4. During day trials, but not night ones, the increasing mussel load of colonised individuals decreased prey capture and the distance moved in an apparent step‐wise function. Although the number of mussels carried did not differ, night foragers carried a heavier load. Independent of time of the day, the distance an individual travelled when mussel‐free was predictive of the number of prey it caught when colonised, suggesting that the greater general activity of some individuals helped mitigate negative effects that mussel attachment had on prey capture. 5. Our results add to a growing number of negative effects of zebra mussel colonisation on sprawling and hiding dragonfly larvae. Although the impact of these costs on dragonfly populations remains to be determined, a decrease in this guild of predators whose life cycle spans aquatic and terrestrial habitats might have cascading effects across ecosystems.  相似文献   

7.
8.
Experiments were conducted to determine whether species of Aeromonas were pathogenic to the zebra mussel Dreissena polymorpha. A. jandaei, A. veronii, and A. media, identified with Biolog, were originally isolated from dead zebra mussels. When inoculated into living mussels, these bacteria resulted in the mortality of the bivalves. Two additional species, A. salmonicida salmonicida (ATCC 33678) and A. hydrophila (ATCC 7966), were also demonstrated to be pathogenic to the mussels. In addition to the pathogenicity, the data also suggest that the zebra mussels may be an important reservoir for these bacteria in freshwater environments. Received: 26 March 1997 / Accepted: 7 July 1997  相似文献   

9.
Peniculistoma mytili and Mytilophilus pacificae are placed in the pleuronematid scuticociliate family Peniculistomatidae based on morphology and ecological preference for the mantle cavity of mytiloid bivalves. We tested this placement with sequences of the small subunit rRNA (SSUrRNA) and cytochrome c oxidase subunit 1 (cox1) genes. These species are very closely related sister taxa with no distinct genetic difference in the SSUrRNA sequence but about 21% genetic difference for cox1, supporting their placement together but separation as distinct taxa. Using infection frequencies, M. pacificae, like its sister species P. mytili, does not interact with Ancistrum spp., co‐inhabitants of the mantle cavity. On the basis of these ecological similarities, the fossil record of host mussels, and features of morphology and stomatogenesis of these two ciliates, we argue that M. pacificae derived from a Peniculistoma‐like ancestor after divergence of the two host mussels. Our phylogenetic analyses of pleuronematid ciliates includes the SSUrRNA gene sequence of Sulcigera comosa, a Histiobalantium‐like ciliate from Lake Baikal. We conclude: (i) that the pleuronematids are a monophyletic group; (ii) that the genus Pleuronema is paraphyletic; and (iii) that S. comosa is a Histiobalantium species. We transfer S. comosa to Histiobalantium and propose a new combination Histiobalantium comosa n. comb.  相似文献   

10.
1. Since zebra mussel invaded Lake Constance in the 1960s the number of wintering waterbirds increased fourfold. We studied the impact of predation by waterbirds (tufted duck Aythya fuligula, pochard Aythya ferina and coot Fulica atra) on the population of Dreissena polymorpha in winter 2001/2002. These three species, with monthly peak numbers of approximately 230 000 individuals, currently comprise up to 80% of the waterbird population wintering at Lake Constance. 2. Four different study sites and four depths, that represent typical and characteristic habitats of mussels in Upper Lake Constance, were chosen. 3. Zebra mussels were sampled before, during and after predation by waterbirds. Their biomass in shallow areas decreased by >90%; the biomass reduction in deeper areas was highly variable and dependent on the substratum. With one exception, no changes could be detected at the greatest depth (11 m). 4. Concurrent exclosure studies revealed that the decrease in zebra mussels was caused by waterbird predation. A GIS‐based approximation revealed that in an area of 1 km2 a total of approximately 750 t mussel fresh mass was removed by birds, which is equivalent to 1390 g mussels per bird per day. 5. Wintering waterbirds have a strong structural impact on the littoral community of Lake Constance and could be the key predator of zebra mussels.  相似文献   

11.
1. The zebra mussel (Dreissena polymorpha) is an aquatic nuisance species that invaded Ireland around 1994. We studied the invasion of the zebra mussel combining field surveys and genetic studies, to determine the origin of invasion and the vector of introduction. 2. Field surveys showed that live zebra mussels, attached to the hulls of pleasure boats, were transported from Britain to Ireland. These boats were lifted from British waters onto trailers, transported to Ireland by ferry and lifted into Irish waters within a day. Length‐frequency distributions of dead and living mussels on one vessel imported 3 months earlier revealed a traumatic occurrence caused by the overland, air‐exposed transportation. Results show that a large number of individuals survived after re‐immersion in Irish waters and continued to grow. 3. Zebra mussels from populations in Ireland, Great Britain, the Netherlands, France and North America, were analysed using amplified fragment length polymorphisms (AFLP)‐fingerprinting to determine the origin of the Irish invasion. Phylogenetic analysis revealed that Irish and British mussels clustered closely together, suggesting an introduction from Britain. 4. Ireland remained un‐invaded by the zebra mussel for more than 150 year. The introduction of the zebra mussel to Ireland occurred following the abolition of value added tax in January 1993 on imported second‐hand boats from the European Union (UK and continental Europe). This, together with a favourable monetary exchange rate at that time, may have increased the risk of invasion of the zebra mussel.  相似文献   

12.
13.
  • 1 Zebra mussels (Dreissena polymorpha) are successful colonisers of lake littoral habitats and they interact strongly with littoral benthos. Previous research suggests that localised areas colonised by zebra mussels may be hotspots of nitrogen (N) cycling.
  • 2 The effects of zebra mussels on nitrification and denitrification rates were examined approximately every other month for 1 year in Gull Lake, Michigan, U.S.A. Littoral sediment was collected from an area free of zebra mussels and distributed into shallow trays; rocks colonised with zebra mussels were placed in half of the trays, while uncolonised rocks were placed in the remaining trays. After an incubation period of 6–8 weeks in the lake, sediment and zebra mussels were collected from the trays, replaced with new sediment and zebra mussels, and placed in the lake for the next interval. In the laboratory, sediment nitrification and denitrification rates were measured for each tray.
  • 3 Sediment nitrification rates did not increase in the presence of zebra mussels; instead nitrification rates were sensitive to changes in water temperature and increased with increasing exchangeable sediment ammonium. In contrast, denitrification rates increased in sediment trays with zebra mussels in the winter when nitrate (NO3) availability was high and when Chara did not grow in the trays.
  • 4 Sediment denitrification was NO3‐limited in all seasons, regardless of zebra mussel treatment. However, sediment in the presence of zebra mussels responded less to NO3 addition, suggesting that NO3 limitation of denitrification can be reduced by zebra mussel activity. Zebra mussels have a seasonally variable impact on sediment denitrification rates, and this may translate into altered seasonal patterns of N cycling in localised areas of lakes where they are particularly abundant.
  相似文献   

14.

Zebra mussels (Dreissena polymorpha) filter feed phytoplankton and reduce available pelagic energy, potentially driving fish to use littoral energy sources in lakes. However, changes in food webs and energy flow in complex fish communities after zebra mussel establishment are poorly known. We assessed impacts of zebra mussels on fish littoral carbon use, trophic position, isotopic niche size, and isotopic niche overlap among individual fish species using δ13C and δ15N data collected before (2014) and after (2019) zebra mussel establishment in Lake Ida, MN. Isotope data were collected from 11 fish species, and from zooplankton and littoral invertebrates to estimate baseline isotope values. Mixing models were used to convert fish δ13C and δ15N into estimates of littoral carbon and trophic position, respectively. We tested whether trophic position, littoral carbon use, isotopic niche size, and isotopic niche overlap changed from 2014 to 2019 for each fish species. We found few effects on fish trophic position, but 10 out of 11 fish species increased littoral carbon use after zebra mussel establishment, with mean littoral carbon increasing from 43% before to 67% after establishment. Average isotopic niche size of individual species increased significantly (2.1-fold) post zebra mussels, and pairwise-niche overlap between species increased significantly (1.2-fold). These results indicate zebra mussels increase littoral energy dependence in the fish community, resulting in larger individual isotopic niches and increased isotopic niche overlap. These effects may increase interspecific competition among fish species and could ultimately result in reduced abundance of species less able to utilize littoral energy sources.

  相似文献   

15.
1. The zebra mussel (Dreissena polymorpha) is well known for its invasive success and its ecological and economic impacts. Of particular concern has been the regional extinction of North American freshwater mussels (Order Unionoida) on whose exposed shells the zebra mussels settle. Surprisingly, relatively little attention has been given to the fouling of European unionoids. 2. We investigated interspecific patterns in fouling at six United Kingdom localities between 1998 and 2008. To quantify the effect on two pan‐European unionoids (Anodonta anatina and Unio pictorum), we used two measures of physiological status: tissue mass : shell mass and tissue glycogen content. 3. The proportion of fouled mussels increased between 1998 and 2008, reflecting the recent, rapid increase in zebra mussels in the U.K. Anodonta anatina was consistently more heavily fouled than U. pictorum and had a greater surface area of shell exposed in the water column. 4. Fouled mussels had a lower physiological condition than unfouled mussels. Unlike tissue mass : shell mass ratio, tissue glycogen content was independent of mussel size, making it a particularly useful measure of condition. Unio pictorum showed a stronger decline in glycogen with increasing zebra mussel load, but had a broadly higher condition than A. anatina at the time of study (July). 5. Given the high conservation status and important ecological roles of unionoids, the increased spatial distribution and fouling rates by D. polymorpha in Europe should receive more attention.  相似文献   

16.
Non-indigenous crayfish often have major ecological impacts on invaded water bodies, and have contributed to the decline of native crayfish species throughout Europe. The American signal crayfish, Pacifastacus leniusculus, is the most widespread invasive crayfish in Great Britain, where the zebra mussel, Dreissena polymorpha, is similarly an invasive pest species. The potential for the American signal crayfish to regulate zebra mussel populations was investigated through a series of laboratory experiments. Crayfish were found to be highly size selective, consuming significantly more of the smallest size class of zebra mussels offered (7–12 mm), over medium (16–21 mm) and large (25–30 mm). Crayfish feeding rate on zebra mussels was not altered when mussels were presented clumped together in natural druses compared with mussels in a disassembled druse. Crayfish spent significantly more time foraging when mussels were unattached, and a greater proportion of attacks were on medium and large than on small mussels (83% of attacks were on medium and large mussels when unattached as opposed to 47% when on druses). Individual crayfish feeding rate decreased significantly at densities of > ~5 crayfish m−2. Signal crayfish are, therefore, unlikely to be able to significantly impact established populations of zebra mussels in the wild, although zebra mussels have the potential to provide crayfish with a substantial food source.  相似文献   

17.
Although zebra mussels (Dreissena polymorpha) have invaded watersacross Europe for over 200 years, they colonized Ireland onlywithin the past decade. To test the hypothesis that Irelandwas colonized by adult D. polymorpha, we examined mussels fromdifferent sites along the Lower Shannon River system in Irelandfor the presence of host specific and generalist endosymbionts.Withinthe mantle cavity and/or associated with zebra mussel tissueswe found species specific-ciliates (Conchophthirus acuminatusand Ophryoglena hemophaga) and generalist symbionts (the ciliateAncistrumina limnica, nematodes, oligochaetes and chironomids).We found a significant difference in the prevalence of symbiontsamong sites, but all mussels at all sites harboured one specialistspecies C. acuminatus, and all of the mussels at three of thefour sites also had the second specialist, O. hemophaga. Thus,with the introduction of D. polymorpha into Ireland, at leasttwo additional species, their host-specific symbionts C. acuminatusand O. hemophaga, have also been introduced. The presence ofthese symbionts in Ireland supports the hypothesis that adultzebra mussels were introduced into Ireland, rather than larvalstages. This contrasts with the introduction of zebra musselsto North America, where adult zebra mussels are devoid of host-specificsymbionts. (Received 8 June 2005; accepted 7 November 2005)  相似文献   

18.
The European bitterling, Rhodeus amarus, is a non-indigenous fish species in British fresh waters. It lays its eggs in unionid mussels which themselves are vulnerable to fouling by the non-indigenous zebra mussel, Dreissena polymorpha. Observations from an unmanipulated natural system showed that only 27% of zebra mussel-fouled Unio pictorum hosted bitterling, while 47% of unfouled U. pictorum hosted bitterling. We conducted a field experiment in the River Great Ouse catchment, Cambridgeshire, England in May–June 2007 and 2008 to quantify the impact of zebra mussels on bitterling load in host mussels. Zebra mussel-fouled unionids were significantly less likely to host bitterling than unfouled unionids. The number of unionids hosting bitterling did not differ significantly whether the zebra mussels fouling the unionid were alive or dead. Bitterling appeared to discriminate against zebra mussel-fouled unionids less as the 2007 breeding season advanced, potentially because preferred unfouled unionids had a higher bitterling load, and were therefore relatively lower quality hosts than at the start of the breeding season.  相似文献   

19.
1. We used long‐term data and a simulation model to investigate temporal fluctuations in zebra mussel populations, which govern the ecological and economic impacts of this pest species. 2. The size of the zebra mussel (Dreissena polymorpha) population in the Hudson River estuary fluctuated approximately 11‐fold across a 13‐year period, following a cycle with a 2–4 year period. 3. This cycling was caused by low recruitment during years of high adult population size, rapid somatic growth of settled animals, and adult survivorship of 50% per year. 4. Adult growth and body condition were weakly correlated with phytoplankton biomass. 5. The habitat distribution of the Hudson's population changed over the 13‐year period, with an increasing proportion of the population spreading onto soft sediments over time. The character of soft‐sediment habitats in the Hudson changed because of large amounts (mean = 34 g DM m?2) of empty zebra mussel shells now in the sediments. 6. Simulation models show that zebra mussel populations can show a range of long‐term trajectories, depending on the balance between adult space limitation, larval food limitation, and disturbance. 7. Effective understanding and management of the effects of zebra mussels and other alien species depend on understanding of their long‐term demography, which may vary across ecosystems.  相似文献   

20.
1. The bivalve Dreissena polymorpha has invaded many freshwater ecosystems worldwide in recent decades. Because of their high fecundity and ability to settle on almost any solid substratum, zebra mussels usually outcompete the resident species and cause severe damage to waterworks. Time series of D. polymorpha densities display a variety of dynamical patterns, including very irregular behaviours. Unfortunately, there is a lack of mathematical modelling that could explain these patterns. 2. Here, we propose a very simple discrete‐time population model with age structure and density dependence that can generate realistic dynamics. Most of the model parameters can be derived from existing data on D. polymorpha. Some of them are quite variable: with respect to these we perform a sensitivity analysis of the model behaviour and verify that non‐equilibrial regimes (either periodic or chaotic) are the rule rather than the exception. 3. Even in circumstances where the model dynamics are aperiodic it is possible to predict total density peaks from previous peaks. This turns out to be true also in the presence of environmental stochasticity. 4. Using the stochastic model we explore the effects of age‐selective predation. Quite surprisingly, larger removal rates of adults do not always result in smaller population densities and mussel biomasses. Moreover, non‐selective predation can result in skewed size‐frequency distributions which, therefore, are not necessarily the footprint of predators’ preference for larger or smaller zebra mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号