共查询到20条相似文献,搜索用时 15 毫秒
1.
A general-purpose Monte Carlo assignment program has been developed to aid in the assignment of NMR resonances from proteins. By virtue of its flexible data requirements the program is capable of obtaining assignments of both heavily deuterated and fully protonated proteins. A wide variety of source data, such as inter-residue scalar connectivity, inter-residue dipolar (NOE) connectivity, and residue specific information, can be utilized in the assignment process. The program can also use known assignments from one form of a protein to facilitate the assignment of another form of the protein. This attribute is useful for assigning protein-ligand complexes when the assignments of the unliganded protein are known. The program can be also be used as an interactive research tool to assist in the choice of additional experimental data to facilitate completion of assignments. The assignment of a deuterated 45 kDa homodimeric Glutathione-S-transferase illustrates the principal features of the program. 相似文献
2.
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein structure calculation and has been shown to yield results that are equivalent to those of the conventional, manual approach. However, these algorithms rely on the availability of a virtually complete list of the chemical shifts. This paper investigates the influence of incomplete chemical shift assignments on the reliability of NMR structures obtained with automated NOESY cross peak assignment. The program CYANA was used for combined automated NOESY assignment with the CANDID algorithm and structure calculations with torsion angle dynamics at various degrees of completeness of the chemical shift assignment which was simulated by random omission of entries in the experimental 1H chemical shift lists that had been used for the earlier, conventional structure determinations of two proteins. Sets of structure calculations were performed choosing the omitted chemical shifts randomly among all assigned hydrogen atoms, or among aromatic hydrogen atoms. For comparison, automated NOESY assignment and structure calculations were performed with the complete experimental chemical shift but under random omission of NOESY cross peaks. When heteronuclear-resolved three-dimensional NOESY spectra are available the current CANDID algorithm yields in the absence of up to about 10% of the experimental 1H chemical shifts reliable NOE assignments and three-dimensional structures that deviate by less than 2 Å from the reference structure obtained using all experimental chemical shift assignments. In contrast, the algorithm can accommodate the omission of up to 50% of the cross peaks in heteronuclear- resolved NOESY spectra without producing structures with a RMSD of more than 2 Å to the reference structure. When only homonuclear NOESY spectra are available, the algorithm is slightly more susceptible to missing data and can tolerate the absence of up to about 7% of the experimental 1H chemical shifts or of up to 30% of the NOESY peaks.Abbreviations: BmPBPA – Bombyx mori pheromone binding protein form A; CYANA – combined assignment and dynamics algorithm for NMR applications; NMR – nuclear magnetic resonance; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; RMSD – root-mean-square deviation; WmKT – Williopsis mrakii killer toxin 相似文献
3.
4.
5.
Ta-hsien Lin Chinpan Chen Rong-Fong Huang Ya-Lin Lee Jei-Fu Shaw Tai-huang Huang 《Journal of biomolecular NMR》1998,11(4):363-380
Escherichia coli thioesterase/protease I is a 183 amino acid protein with a molecular mass of 20500. This protein belongs to a new subclass of lipolytic enzymes of the serine protease superfamily, but with a new GDSLS consensus motif, of which no structure has yet been determined. The protein forms a tetramer at pH values above 6.5 and exists as a monomer at lower pH values. Both monomer and tetramer are catalytically active. From analysis of a set of heteronuclear multidimensional NMR spectra with uniform and specific amino acid labeled protein samples, we have obtained near-complete resonance assignments of the backbone 1H,13 C and 15N nuclei (BMRB databank accession number 4060). The secondary structure of E. coli thioesterase/protease I was further deduced from the consensus chemical shift indices, backbone short- and medium-range NOEs, and amide proton exchange rates. The protein was found to consist of four -strands and seven -helices, arranged in alternate order. The four -strands were shown to form a parallel -sheet. The topological arrangement of the -strands of -1x, +2x, +1x appears to resemble that of the core region of the hydrolase superfamily, typically found in common lipases and esterases. However, substantial differences, such as the number of -strands and the location of the catalytic triad residues, make it difficult to give a definitive classification of the structure of E. coli thioesterase/protease I at present. 相似文献
6.
We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. 相似文献
7.
8.
9.
Rintaro Suzuki Akira Tase Zui Fujimoto Takahiro Shiotsuki Toshimasa Yamazaki 《Biomolecular NMR assignments》2009,3(1):73-76
A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life
cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments
of Bombyx mori JHBP in the JH III-bound state. 相似文献
10.
Robert Tycko 《Journal of biomolecular NMR》1996,8(3):239-251
Summary The feasibility of assigning the backbone 15N and 13C NMR chemical shifts in multidimensional magic angle spinning NMR spectra of uniformly isotopically labeled proteins and peptides in unoriented solid samples is assessed by means of numerical simulations. The goal of these simulations is to examine how the upper limit on the size of a peptide for which unique assignments can be made depends on the spectral resolution, i.e., the NMR line widths. Sets of simulated three-dimensional chemical shift correlation spectra for artificial peptides of varying length are constructed from published liquid-state NMR chemical shift data for ubiquitin, a well-characterized soluble protein. Resonance assignments consistent with these spectra to within the assumed spectral resolution are found by a numerical search algorithm. The dependence of the number of consistent assignments on the assumed spectral resolution and on the length of the peptide is reported. If only three-dimensional chemical shift correlation data for backbone 15N and 13C nuclei are used, and no residue-specific chemical shift information, information from amino acid side-chain signals, and proton chemical shift information are available, a spectral resolution of 1 ppm or less is generally required for a unique assignment of backbone chemical shifts for a peptide of 30 amino acid residues. 相似文献
11.
Wolfram Gronwald Leigh Willard Timothy Jellard Robert F. Boyko Krishna Rajarathnam David S. Wishart Frank D. Sönnichsen Brian D. Sykes 《Journal of biomolecular NMR》1998,12(3):395-405
A suite of programs called CAMRA (Computer Aided Magnetic Resonance Assignment) has been developed for computer assisted residue-specific assignments of proteins. CAMRA consists of three units: ORB, CAPTURE and PROCESS. ORB predicts NMR chemical shifts for unassigned proteins using a chemical shift database of previously assigned homologous proteins supplemented by a statistically derived chemical shift database in which the shifts are categorized according to their residue, atom and secondary structure type. CAPTURE generates a list of valid peaks from NMR spectra by filtering out noise peaks and other artifacts and then separating the derived peak list into distinct spin systems. PROCESS combines the chemical shift predictions from ORB with the spin systems identified by CAPTURE to obtain residue specific assignments. PROCESS ranks the top choices for an assignment along with scores and confidence values. In contrast to other auto-assignment programs, CAMRA does not use any connectivity information but instead is based solely on matching predicted shifts with observed spin systems. As such, CAMRA represents a new and unique approach for the assignment of protein NMR spectra. CAMRA will be particularly useful in conjunction with other assignment methods and under special circumstances, such as the assignment of flexible regions in proteins where sufficient NOE information is generally not available. CAMRA was tested on two medium-sized proteins belonging to the chemokine family. It was found to be effective in predicting the assignment providing a database of previously assigned proteins with at least 30% sequence identity is available. CAMRA is versatile and can be used to include and evaluate heteronuclear and three-dimensional experiments. 相似文献
12.
Summary A new computer-based approach is described for efficient sequence-specific assignment of uniformly 15N-labeled proteins. For this purpose three-dimensional 15N-correlated [1H, 1H]-NOESY spectra are divided up into two-dimensional 1H-1H strips which extend over the entire spectral width along one dimension and have a width of ca. 100 Hz, centered about the amide proton chemical shifts along the other dimension. A spectral correlation function enables sorting of these strips according to proximity of the corresponding residues in the amino acid sequence. Thereby, starting from a given strip in the spectrum, the probability of its corresponding to the C-terminal neighboring residue is calculated for all other strips from the similarity of their peak patterns with a pattern predicted for the sequentially adjoining residue, as manifested in the scalar product of the vectors representing the predicted and measured peak patterns. Tests with five different proteins containing both -helices and -sheets, and ranging in size from 58 to 165 amino acid residues show that the discrimination achieved between the sequentially neighboring residue and all other residues compares well with that obtained with an unguided interactive search of pairs of sequentially neighboring strips, with important savings in the time needed for complete analysis of 3D 15N-correlated [1H, 1H]-NOESY spectra. The integration of this routine into the program package XEASY ensures that remaining ambiguities can be resolved by visual inspection of the strips, combined with reference to the amino acid sequence and information on spin-system types obtained from additional NMR spectra.Abbreviations 1D, 2D, 3D, 4D
one-, two-, three-, four-dimensional
- NOE
nuclear Overhauser enhancement
- NOESY
nuclear Overhauser enhancement spectroscopy
- COSY
correlation spectroscopy
- TOCSY
total correlation spectroscopy 相似文献
13.
14.
15.
16.
17.
18.
The assignment of the 1H spectrum of a protein or a polypeptide is the prerequisite for advanced NMR studies. We present here an assignment tool based on the artificial neural network technology, which determines the type of the amino acid from the chemical shift values observed in the 1 H spectrum. Two artificial neural networks have been trained and extensively tested against a non-redundant subset of the BMRB chemical shift data bank [Seavey, B.R. et al. (1991) J. Biomol. NMR, 1, 217–236]. The most promising of the two accomplishes the analysis in two steps, grouping related amino acids together. It presents a mean rate of success above 80% on the test set. The second network tested separates down to the single amino acid; it presents a mean rate of success of 63%. This tool has been used to assist the manual assignment of peptides and proteins and can also be used as a block in an automated approach to assignment. The program has been called RESCUE and is made publicly available at the following URL: http://www.infobiosud.univ-montp1.fr/rescue. 相似文献
19.
Jinghua Yu Virgil Simplaceanu Nico L. Tjandra Patricia F. Cottam Jonathan A. Lukin Chien Ho 《Journal of biomolecular NMR》1997,9(2):167-180
1H, 13C, and 15N NMR assignments of the backbone atoms and -carbons have been madefor liganded glutamine-binding protein (GlnBP) of Escherichia coli, a monomeric protein with226 amino acid residues and a molecular weight of 24,935 Da. GlnBP is a periplasmicbinding protein which plays an essential role in the active transport of L-glutamine throughthe cytoplasmic membrane. The assignments have been obtained from three-dimensionaltriple-resonance NMR experiments on a 13C,15N uniformly labeled sample as well asspecifically labeled samples. Results from the 3D triple-resonance experiments, HNCO,HN(CO)CA, HN(COCA)HA, HNCA, HN(CA)HA, HN(CA)CO, and CBCA(CO)NH, are themain sources used to make the resonance assignments. Other 3D experiments, such asHNCACB, COCAH, HCACO, HCACON, and HOHAHA-HMQC, have been used to confirmthe resonance assignments and to extend connections where resonance peaks are missing insome of the experiments mentioned above. We have assigned more than 95% of thepolypeptide backbone resonances of GlnBP. The result of the standard manual assignment isin agreement with that predicted by an automated probabilistic method developed in ourlaboratory. A solution secondary structure of the GlnBP–Gln complex has beenproposed based on chemical shift deviations from random coil values. Eight -helices and10 -strands are derived using the Chemical Shift Index method. 相似文献
20.
We have developed a tool for computer-assisted assignments of protein NMR spectra from triple resonance data. The program is designed to resemble established manual assignment procedures as closely as possible. IBIS exports its results in XEASY format. Thus, using IBIS the operator has continuous visual and accounting control over the progress of the assignment procedure. IBIS achieves complete assignments for those residues that exhibit sequential triple resonance connectivities within a few hours or days. 相似文献