首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When immunological tolerance breaks down, autoimmune destruction of insulin-producing beta cells in the pancreas can cause insulin-dependent diabetes mellitus. We previously showed that transgenic nonobese diabetic (NOD) mice expressing IL-4 in the pancreas (NOD-IL-4 mice) were protected from insulitis and diabetes. Here we have characterized the avoidance of pathological autoimmunity in these mice. The absence of disease did not result from a lack of T cell priming, because T cells responding to dominant islet Ags were present. These islet Ag-specific T cells displayed a Th2 phenotype, indicating that Th2 responses could account for the observed tolerance. Interestingly, islet Ag-specific Th1 T cells were present and found to be functional, because neutralization of the Th2 effector cytokines IL-4 and IL-10 resulted in diabetes. Histological examination revealed that NOD-IL-4 splenocytes inhibited diabetogenic T cells in cotransfer experiments by limiting insulitis and delaying diabetes. Neutralization of IL-4 in this system abrogated the ability of NOD-IL-4 splenocytes to delay the onset of diabetes. These results indicate that IL-4 expressed in the islets does not prevent the generation of pathogenic islet responses but induces islet Ag-specific Th2 T cells that block the action of diabetogenic T cells in the pancreas.  相似文献   

2.
Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.  相似文献   

3.
4.
Recurrent autoimmune destruction of the insulin-producing beta cells is a key factor limiting successful islet graft transplantation in type I diabetic patients. In this study, we investigated the feasibility of using an Ag-specific plasmid DNA (pDNA)-based strategy to protect pro-islets that had developed from a neonatal pancreas implanted under the kidney capsule of nonobese diabetic (NOD) mice. NOD recipient mice immunized with pDNA encoding a glutamic acid decarboxylase 65 (GAD65)-IgFc fusion protein (JwGAD65), IL-4 (JwIL4), and IL-10 (pIL10) exhibited an increased number of intact pro-islets expressing high levels of insulin 15 wk posttransplant, relative to NOD recipient mice immunized with pDNA encoding a hen egg lysozyme (HEL)-IgFc fusion protein (JwHEL)+JwIL4 and pIL10 or left untreated. Notably, the majority of grafted pro-islets detected in JwGAD65+JwIL4- plus pIL10-treated recipients was free of insulitis. In addition, administration of JwGAD65+JwIL4+pIL10 provided optimal protection for engrafted islets compared with recipient NOD mice treated with JwGAD65+JwIL4 or JwGAD65+pIL10, despite effective protection of endogenous islets mediated by the respective pDNA treatments. Efficient protection of pro-islet grafts correlated with a marked reduction in GAD65-specific IFN-gamma reactivity and an increase in IL-10-secreting T cells. These results demonstrate that pDNA vaccination can be an effective strategy to mediate long-term protection of pro-islet grafts in an Ag-specific manner and that conditions are more stringent to suppress autoimmune destruction of grafted vs endogenous islets.  相似文献   

5.
BACKGROUND: Type 1 diabetes (T1D) is a T-cell-dependent autoimmune disease resulting from destructive inflammation (insulitis) of the insulin-producing pancreatic beta-cells. Transgenic expression of proinsulin II by a MHC class II promoter or transfer of bone marrow from these transgenic mice protects NOD mice from insulitis and diabetes. We assessed the feasibility of gene therapy in the NOD mouse as an approach to treat T1D by ex vivo genetic manipulation of normal hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice. METHODS: HSCs were isolated from 6-8-week-old NOD female mice and transduced in vitro with retrovirus encoding enhanced green fluorescent protein (EGFP) and either proinsulin II or control autoantigen. Additional control groups included mice transferred with non-manipulated bone marrow and mice which did not receive bone marrow transfer. EGFP-sorted or non-sorted HSCs were transferred into pre-conditioned 3-4-week-old female NOD mice and insulitis was assessed 8 weeks post-transfer. RESULTS: Chimerism was established in all major lymphoid tissues, ranging from 5-15% in non-sorted bone marrow transplants to 20-45% in EGFP-sorted bone marrow transplants. The incidence and degree of insulitis was significantly reduced in mice receiving proinsulin II bone marrow compared to controls. However, the incidence of sialitis in mice receiving proinsulin II bone marrow and control mice was not altered, indicating protection from insulitis was antigen specific. CONCLUSIONS: We show for the first time that ex vivo genetic manipulation of HSCs to express proinsulin II followed by transplantation to NOD mice can establish molecular chimerism and protect from destructive insulitis in an antigen-specific manner.  相似文献   

6.
In autoimmune (type 1) diabetes, autoreactive lymphocytes destroy pancreatic β-cells responsible for insulin synthesis. To assess the feasibility of gene therapy for type 1 diabetes, recombinant vaccinia virus (rVV) vectors were constructed expressing pancreatic islet autoantigens proinsulin (INS) and a 55-kDa immunogenic peptide from glutamic acid decarboxylase (GAD), and the immunomodulatory cytokine interleukin (IL)-10. To augment the beneficial effects of recombinant virus therapy, the INS and GAD genes were fused to the C terminus of the cholera toxin B subunit (CTB). Five-week-old non-obese diabetic (NOD) mice were injected once with rVV. Humoral antibody immune responses and hyperglycemia in the infected mice were analyzed. Only 20% of the mice inoculated with rVV expressing the CTB::INS fusion protein developed hyperglycemia, in comparison to 70% of the mice in the uninoculated animal group. Islets from pancreatic tissues isolated from euglycemic mice from this animal group showed no sign of inflammatory lymphocyte invasion. Inoculation with rVV producing CTB::GAD or IL-10 was somewhat less effective in reducing diabetes. Humoral antibody isotypes of hyperglycemic and euglycemic mice from all treated groups possessed similar IgG1/IgG2c antibody titer ratios from 19 to 32 wk after virus inoculation. In comparison with uninoculated mice, 11-wk-old NOD mice injected with virus expressing CTB::INS were delayed in diabetes onset by more than 4 wk. The experimental results demonstrate the feasibility of using rVV expressing CTB::INS fusion protein to generate significant protection and therapy against type 1 diabetes onset and progression.  相似文献   

7.
Autoimmune diabetes occurs when invading lymphocytes destroy insulin-producing beta cells in pancreatic islets. The role of lymphocytic aggregates at this inflammatory site is not understood. We find that B and T lymphocytes attacking islets in NOD mice organize into lymphoid structures with germinal centers. Analysis of BCR L chain genes was used to investigate selection of B lymphocytes in these tertiary lymphoid structures and in draining pancreatic lymph nodes. The pancreatic repertoire as a whole was found to be highly diverse, with the profile of L chain genes isolated from whole pancreas differing from that observed in regional lymph nodes. A Vkappa14 L chain predominated within the complex pancreatic repertoire of NOD mice. Skewing toward Vkappa4 genes was observed in the pancreas when the repertoire of NOD mice was restricted using a fixed Ig H chain transgene. Nucleotide sequencing of expressed Vkappas identified shared mutations in some sequences consistent with Ag-driven selection and clonal expansion at the site of inflammation. Isolated islets contained oligoclonal B lymphocytes enriched for the germinal center marker GL7 and for sequences containing multiple mutations within CDRs, suggesting local T-B interactions. Together, these findings identify a process that selects B lymphocyte specificities within the pancreas, with further evolution of the selected repertoire at the inflamed site. This interpretation is reinforced by Ag-binding studies showing a large population of insulin-binding B lymphocytes in the pancreas compared with draining lymph nodes.  相似文献   

8.
NOD mice spontaneously develop diabetic syndrome similar to that of insulin-dependent diabetes mellitus in man. Insulitis, i.e., lymphocytic infiltration into the pancreatic islets is the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. In the present study, we examined the role of the T cell in the development of insulitis and overt diabetes in NOD mice using NOD athymic and euthymic congenic mice. None of the NOD athymic mice developed insulitis at 9 weeks of age or overt diabetes up to 30 weeks of age. In contrast, NOD euthymic littermates showed almost the same incidences of insulitis and overt diabetes as those of NOD mice. These observations suggest that T cells are essential for the development of insulitis and overt diabetes in NOD mice.  相似文献   

9.
10.
Genetic and environmental factors are decisive in the etiology of type 1 diabetes. Viruses have been proposed as a triggering environmental event and some evidences have been reported: type I IFNs exist in the pancreata of diabetic patients and transgenic mice expressing these cytokines in beta cells develop diabetes. To determine the role of IFNbeta in diabetes, we studied transgenic mice expressing human IFNbeta in the beta cells. Autoimmune features were found: MHC class I islet hyperexpression, T and B cells infiltrating the islets and transfer of the disease by lymphocytes. Moreover, the expression of beta(2)-microglobulin, preproinsulin, and glucagon in the thymus was not altered by IFNbeta, thus suggesting that the disease is caused by a local effect of IFNbeta, strong enough to break the peripheral tolerance to beta cells. This is the first report of the generation of NOD (a model of spontaneous autoimmune diabetes) and nonobese-resistant (its homologous resistant) transgenic mice expressing a type I IFN in the islets: transgenic NOD and nonobese-resistant mice developed accelerated autoimmune diabetes with a high incidence of the disease. These results indicate that the antiviral cytokine IFNbeta breaks peripheral tolerance to beta cells, influences the insulitis progression and contributes to autoimmunity in diabetes and nondiabetes- prone mice.  相似文献   

11.
Beta cell destruction in NOD mice can be accelerated by adoptive transfer of diabetic spleen cells into irradiated adult NOD mice. Here mice receiving diabetic spleen cells were examined at days 0, 7, 14, 21 and at onset of diabetes for the resulting insulitis and the number of intra-islet CD4 and CD8 cells and macrophages. The progression of insulitis and the number of intra-islet CD4 and CD8 cells and macrophages were correlated with the expression and co-localization of inducible nitric oxide synthase, interferon- and interleukin-4 by dual-label light and confocal immunofluorescence microscopy. Diabetes developed in 7/8 mice by 27 days following cell transfer. The insulitis score increased slightly by day 7 but rose sharply at day 14 (p=0.001) and was maintained until diabetes. The mean number of intra-islet CD4 and CD8 cells and macrophages showed a similar trend to the insulitis scores and were present in almost equal numbers within the islets. Immunolabelling for inducible nitric oxide synthase was observed at day 7 in only some cells of a few islets but increased sharply from day 14. It was restricted to islets with insulitis and was co-localized in selective macrophages. Weak intra-islet interleukin-4 labelling was observed at days 7 and 14 but became more pronounced at day 21 and at onset of diabetes, being present in selective CD4 cells. Intra-islet labelling for interferon- was first observed at day 21, but became more intense at onset of diabetes and was co-localized in a proportion of macrophages. Both cytokines were expressed in islets with advanced insulitis. Interferon- staining was also observed within endothelial cells located in the exocrine pancreas. We conclude that transfer of diabetic spleen cells results in a rapid influx of CD4 and CD8 cells and macrophages within the pancreas of recipient mice. During the period of heightened insulitis, selective immune cells begin to express inducible nitric oxide synthase and the opposing cytokines, interferon- and interleukin-4. Expression of these molecules becomes more pronounced immediately prior to and during the onset of diabetes.  相似文献   

12.
Non-obese diabetic (NOD) mice spontaneously develop insulin dependent diabetes due to autoimmune destruction of beta-cells. The progression of insulitis can be accelerated and synchronized in the pancreas by a single injection of 250 mg/kg cyclophosphamide. In this study, we will report on three immune mediators that were not known to be expressed during insulitis until now. Early insulitis in ten-week-old female NOD mice was associated with strong expression of prostaglandin H synthase 2 in the pancreas and of arginase, an antagonist enzyme of the inducible NO synthase. After acceleration of insulitis progression by cyclophosphamide, expression of the two enzymes was downregulated within 24 h. There was strong concomitant upregulation of IL-15 gene expression that preceded lymphocyte invasion of islets and a rise of IFN-gamma mRNA levels by several days. The comparison of individual pancreata showed that the expression of IL-12 and IL-18 mRNA closely correlated with levels of IL-15 gene expression. We conclude that arginase and prostaglandin H synthase 2 expression is associated with peri-insulitis, while IL-15 is a candidate cytokine in driving destructive insulitis, as it elicits Th1-cytotoxic responses in lymphoid as well as in non-lymphoid immune cells and is unusually resistant to downregulation by antagonistic cytokines. This is the first report on arginase, prostaglandin H synthase 2 and IL-15 expression in pancreatic lesions of prediabetic NOD mice.  相似文献   

13.
To assess the immunomodulatory activity of the HIV Tat transduction peptide for enhancement of suppression of Type 1 autoimmune diabetes, the 11 amino acid HIV-1 Tat transduction peptide was genetically linked to the major islet autoantigens proinsulin (INS) and glutamic acid decarboxylase (GAD). The Tat-autoantigen fusion proteins were synthesized in Escherichia coli and characterized by acrylamide gel separation and immunoblot analysis. Histological examination of pancreatic islets isolated from juvenile NOD mice inoculated orally with the Tat-autoantigen conjugates revealed a significant reduction in islet inflammation (insulitis) in comparison with islets from unimmunized mice. Increased serum IgG1 antibody isotype titers detected in Tat-autoantigen inoculated mice suggest that the transduction peptide-autoantigen fusion proteins stimulate Th2 lymphocyte mediated bystander suppression. The reduction of islet insulitis observed in Tat-autoantigen inoculated mice suggests that the adjuvant effect of the Tat transduction peptide resides in Tat enhanced delivery of linked autoantigens through enterocytes to lymphocytes in the gut-associated lymphoid tissues.  相似文献   

14.
We investigated the biological role of CC chemokines in the Th1-mediated pathogenesis of spontaneous type I diabetes in nonobese diabetic (NOD) mice. Whereas an elevated ratio of macrophage inflammatory protein-1alpha (MIP-1alpha):MIP-1beta in the pancreas correlated with destructive insulitis and progression to diabetes in NOD mice, a decreased intrapancreatic MIP-1alpha:MIP-1beta ratio was observed in nonobese diabetes-resistant (NOR) mice. IL-4 treatment, which prevents diabetes in NOD mice by polarizing intraislet Th2 responses, decreased CCR5 expression in islets and potentiated a high ratio of MIP-1beta and monocyte chemotactic protein-1 (MCP-1): MIP-1alpha in the pancreas. Furthermore, NOD.MIP-1alpha-/- mice exhibited reduced destructive insulitis and were protected from diabetes. Neutralization of MIP-1alpha with specific Abs following transfer of diabetogenic T cells delayed the onset of diabetes in NOD.Scid recipients. These studies illustrate that the temporal expression of certain CC chemokines, particularly MIP-1alpha, and the CCR5 chemokine receptor in the pancreas is associated with the development of insulitis and spontaneous type I diabetes.  相似文献   

15.
Type 1 diabetes is caused by death of insulin-producing pancreatic beta cells. Beta-cell apoptosis induced by FasL may be important in type 1 diabetes in humans and in the non-obese diabetic (NOD) mouse model. Deficiency of the pro-apoptotic BH3-only molecule Bid protects beta cells from FasL-induced apoptosis in vitro. We aimed to test the requirement for Bid, and the significance of Bid-dependent FasL-induced beta-cell apoptosis in type 1 diabetes. We backcrossed Bid-deficient mice, produced by homologous recombination and thus without transgene overexpression, onto a NOD genetic background. Genome-wide single nucleotide polymorphism analysis demonstrated that diabetes-related genetic regions were NOD genotype. Transferred beta cell antigen-specific CD8+ T cells proliferated normally in the pancreatic lymph nodes of Bid-deficient mice. Moreover, Bid-deficient NOD mice developed type 1 diabetes and insulitis similarly to wild-type NOD mice. Our data indicate that beta-cell apoptosis in type 1 diabetes can proceed without Fas-induced killing mediated by the BH3-only protein Bid.  相似文献   

16.
Rotaviruses have been implicated as a possible viral trigger for exacerbations in islet autoimmunity, suggesting they might modulate type 1 diabetes development. In this study, the ability of rotavirus strain RRV to infect the pancreas and affect insulitis and diabetes was examined in nonobese diabetic (NOD) mice, an experimental model of type 1 diabetes. Mice were inoculated either orally or intraperitoneally as infants or young adults. In infant mice inoculated orally, rotavirus antigen was detected in pancreatic macrophages outside islets and infectious virus was found in blood cells, pancreas, spleen, and liver. Extraintestinal RRV spread and pancreatic presence of infectious virus also occurred in intraperitoneally inoculated infant and adult mice. The initiation of insulitis was unaltered by infection. The onset of diabetes was delayed in infant mice inoculated orally and infant and adult mice inoculated intraperitoneally. In contrast, adult mice inoculated orally showed no evidence of pancreatic RRV, the lowest rate of detectable RRV replication, and no diabetes modulation. Thus, the ability of RRV infection to modulate diabetes development in infant and young adult NOD mice was related to the overall extent of detectable virus replication and the presence of infectious virus extraintestinally, including in the pancreas. These studies show that RRV infection of infant and young adult NOD mice provides significant protection against diabetes. As these findings do not support the hypothesis that rotavirus triggers autoimmunity related to type 1 diabetes, further research is needed to resolve this issue.  相似文献   

17.
Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to beta-cell antigens and thereby delays development of diabetes.  相似文献   

18.
Nonobese diabetic (NOD) mice transgenic for Fas ligand (FasL) on islet beta cells (HIPFasL mice) exhibit an accelerated diabetes distinct from the normal autoimmune diabetes of NOD mice. This study was undertaken to define the mechanism underlying accelerated diabetes development in HIPFasL mice. It was found that diabetes in HIPFasL mice is dependent on the NOD genetic background, as HIPFasL does not cause diabetes when crossed into other mice strains and is lymphocyte dependent, as it does not develop in HIPFasL(SCID) mice. Diabetes development in NOD(SCID) recipients of diabetic HIPFasL splenocytes is slower than when using splenocytes from diabetic NOD mice. Beta cells from HIPFasL mice are more susceptible to cytokine-induced apoptosis than wild-type NOD beta cells, and this can be blocked with anti-FasL Ab. HIPFasL islets are more rapidly destroyed than wild-type islets when transplanted into nondiabetic NOD mice. This confirms that FasL(+) islets do not obtain immune privilege, and instead NOD beta cells constitutively expressing FasL are more susceptible to apoptosis induced by Fas-FasL interaction. These findings are consistent with the accelerated diabetes of young HIPFasL mice being a different disease process from the autoimmune diabetes of wild-type NOD mice. The data support a mechanism by which cytokines produced by the insulitis lesion mediate up-regulation of beta cell Fas expression, resulting in suicide or fratricide of HIPFasL beta cells that overexpress FasL.  相似文献   

19.
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.  相似文献   

20.
We have produced transgenic mouse strains harboring class II major histocompatibility complex or interferon-gamma genes linked to the human insulin promoter. These experiments were designed to investigate the consequences of the expression of immunological effector molecules by nonimmunological cells. In both of these studies we observed the disappearance from the pancreas of the insulin-producing beta cells coinciding with the development of insulin-dependent diabetes mellitus. Transgenic mice expressing both chains of the I-A gene showed progressive atrophy of the islets of Langerhans, whereas mice expressing interferon-gamma suffered an inflammatory destruction of the islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号