首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urotensin II (UII) has been reported as the most potent known vasoconstrictor. While rat and mouse orthologs of UII precursor protein have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack typical processing sites for their mature peptides. In the present study, we isolated a novel peptide, UII-related peptide (URP), from the extract of the rat brain as the sole immunoreactive substance to anti-UII antibody; the amino acid sequence of the peptide was determined as ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and revealed that the sequences of mouse and human URP peptides are the same as that for rat URP. Prepro-URP gene is expressed in several rat tissues such as those of the thymus, spleen, testis, and spinal cord, although with lower levels than the prepro-UII gene. In the human, the prepro-URP gene is expressed comparably to prepro-UII in several tissues except the spinal cord. URP was found to bind and activate the human or rat UII receptors (GPR14) and showed a hypotensive effect when administered to anesthetized rats. These results suggest that URP is the endogenous and functional ligand for UII receptor in the rat and mouse, and possibly in the human. We also describe the preparation of specific monoclonal antibodies raised against UII peptide and the establishment of a highly sensitive enzyme immunoassay system for UII peptides.  相似文献   

2.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

3.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

4.
The preform of human mitochondrial uracil-DNA glycosylase (UNG1) contains 35 N-terminal residues required for mitochondrial targeting. We have examined processing of human UNG1 expressed in insect cells and processing in vitro by human mitochondrial extracts . In insect cells we detected a major processed form lacking 29 of the 35 unique N-terminal residues (UNG1Delta29, 31 kDa) and two minor forms lacking the 75 and 77 N-terminal residues, respectively (UNG1Delta75 and UNG1Delta77, 26 kDa). Purified UNG1Delta29 was effectively cleaved in vitro to a fully active 26 kDa form by human mitochondrial extracts. Furthermore, endogenous forms of 31 and 26 kDa were also observed in HeLa mitochondrial extracts. The sequences at the cleavage sites, as identified by peptide sequencing, were compatible with the known specificity of mitochondrial processing peptidase (MPP). However, in vitro cleavage of UNG1Delta29 by mitochondrial extracts did not require divalent cations and was stimulated by EDTA, indicating the involvement of a processing peptidase distinct from MPP at the second site. Interestingly, while UNG1Delta29 generally has the typical properties reported for other uracil-DNA glycosylases, it is not inhibited by apurinic/apyrimidinic sites. Our results indicate that the preform of human mitochondrial uracil-DNA glycosylase is processed to distinctly different forms lacking 29 or 75/77 N-terminal residues, respectively.  相似文献   

5.
Sugo T  Mori M 《Peptides》2008,29(5):809-812
Urotensin II (UII), which was originally isolated from the teleost urophysis, was identified as an endogenous ligand for orphan G protein-coupled receptor 14 (GPR14). The structure of mammalian UII was confirmed by isolation from spinal cord in porcine, or was easily predicted from the sequence of prepro-UII in human. For rat and mouse, however, only the tentative sequences of UII peptides have been demonstrated because the typical processing sites are absent from the amino-terminal region of the mature peptides. Isolation of UII-like immunoreactivity in rat brain revealed the presence of a novel peptide, designated urotensin II-related peptide (URP). URP binds and activates the human and rat urotensin II receptors (GPR14) and has a hypotensive effect when administrated to anesthetized rats. Based on the DNA sequences of the cloned prepro-URP gene, the amino acid sequences of mature URP for mouse and human are identical to that for rat URP. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

6.
Treatment of Escherichia coli cells with procaine (0.55%, w/v) results in the accumulation of precursor in addition to mature forms of two periplasmic proteins, alkaline phosphatase and glutamine-binding protein. The precursor form of alkaline phosphatase has a higher molecular weight than the mature form by about 2600. An experimental technique is described to isolate and purify precursor forms of any presumably exported protein. After the membrane solubilization step in the presence of nonionic detergent, a peptidase is stimulated, resulting in partial cleavage of the precursors. The products of this cleavage have been identified as the mature protein and presumably the signal peptide in the case of alkaline phosphatase. The amino acid composition of this peptide, which is comprised of 25 residues, has been determined. Procaine (0.55%, w/v) causes an increase in molecular packing of lipid molecules in the membrane which might result in an alteration of membrane fluidity sufficient for selective inhibition of processing of precursors of exported proteins.  相似文献   

7.
Gamma-glutamyltranspeptidase (GGT) is an extracellular enzyme that plays a key role in glutathione metabolism. The mature GGT is a heterodimer consisting of L- and S-subunits that is generated by posttranslational cleavage of the peptide bond between Gln-390 and Thr-391 in the precursor protein. Thr-391, which becomes the N-terminal residue of the S-subunit, acts as the active residue in the catalytic reaction. The crystal structure of a mutant GGT, T391A, that is unable to undergo autocatalytic processing, has been determined at 2.55-A resolution. Structural comparison of the precursor protein and mature GGT demonstrates that the structures of the core regions in the two proteins are unchanged, but marked differences are found near the active site. In particular, in the precursor, the segment corresponding to the C-terminal region of the L-subunit occupies the site where the loop (residues 438-449) forms the lid of the gamma-glutamyl group-binding pocket in the mature GGT. This result demonstrates that, upon cleavage of the N-terminal peptide bond of Thr-391, the newly produced C terminus (residues 375-390) flips out, allowing the 438-449 segment to form the gamma-glutamyl group-binding pocket. The electron density map for the T391A protein also identified a water molecule near the carbonyl carbon atom of Gln-390. The spatial arrangement around the water and Thr-391 relative to the scissile peptide bond appears suitable for the initiation of autocatalytic processing, as in other members of the N-terminal nucleophile hydrolase superfamily.  相似文献   

8.
9.
The caudal neurosecretory system is described here for the first time in the zebrafish, one of the most important models used to study biological processes. Light- and electron-microscopical approaches have been employed to describe the structural organization of Dahlgren cells and the urophysis, together with the immunohistochemical localization of urotensin I and II (UI and UII) peptides. Two latero-ventral bands of neuronal perikarya in the caudal spinal cord project axons to the urophysis. The largest secretory neurons (~20 μm) are located rostrally. UII-immunoreactive perikarya are much more numerous than those immunoreactive for UI. A few neurons are immunopositive for both peptides. Axons contain 75-nm to 180-nm dense-core vesicles comprising two populations distributed in two axonal types (A and B). Large dense vesicles predominate in type A axons and smaller ones in type B. Immunogold double-labelling has revealed that some fibres contain both UI and UII, sometimes even within the same neurosecretory granule. UII is apparently the major peptide present and predominates in type A axons, with UI predominating in type B. A surprising finding, not previously reported in other fish, is the presence of dense-core vesicles, similar to those in neurons, in astrocytes including their end-feet around capillaries. Secretory type vesicles are also evident in ependymocytes and cerebrospinal-fluid-contacting neurons in the terminal spinal cord. Thus, in addition to the urophysis, this region may possess further secretory systems whose products and associated targets remain to be established. These results provide the basis for further experimental, genetic and developmental studies of the urophysial system in the zebrafish.  相似文献   

10.
The mature human immunodeficiency virus type 1 proteinase (PR; 11 kDa) can cleave all interdomain junctions in the Gag and Gag-Pol polyprotein precursors. To determine the activity of the enzyme in its precursor form, we blocked release of mature PR from a truncated Gag-Pol polyprotein by introducing mutations into the N-terminal Phe-Pro cleavage site of the PR domain. The mutant precursor autoprocessed efficiently upon expression in Escherichia coli. No detectable mature PR was released; however, several PR-related products ranging in size from approximately 14 to 18 kDa accumulated. Products of the same size were generated when mutant precursors were digested with wild-type PR. Thus, PR can utilize cleavage sites in the region upstream of the PR domain, resulting in the formation of extended PR species. On the basis of active-site titration, the PR species generated from mutated precursor exhibited wild-type activity on peptide substrates. However, the proteolytic activity of these extended enzymes on polyprotein substrates provided exogenously was low when equimolar amounts of extended and wild-type PR proteins were compared. Mammalian cells expressing the mutated precursor produced predominantly precursor and considerably reduced amounts of mature products. Released particles consisted mostly of uncleaved or partially cleaved polyproteins. Our results suggest that precursor forms of PR can autoprocess but are less efficient in processing of the Gag precursor for formation of mature virus particles.  相似文献   

11.
12.
We report the first molecular characterization of a precursor sequence for a small, Ca2+ channel blocking, peptide spider toxin, omega-agatoxin IA. By integrating information generated from a molecular genetic approach using agatoxin cDNAs with data provided from mass spectrometry of the mature toxin, we were able to deduce the likely mechanisms by which the toxin precursor peptide is processed to its mature heterodimeric form. A particularly interesting feature of the prepropeptide is the occurrence of two glutamate-rich sequences interposed between the signal sequences, the major peptide toxin, and the minor toxin peptide. Excision of the more distal glutamate-rich region appears to be signaled by flanking arginine residues but likely occurs only after a disulfide linkage has formed between the major and minor chains of the mature toxin. Our molecular genetic approach toward characterizing this toxin will allow us to quickly generate a series of spider sequences from which mature toxin structures can be deduced and eventually expressed. Additionally, this approach will provide insights into the evolutionary divergence observed among spider peptide toxins.  相似文献   

13.
14.
Neuroendocrine peptides mature partly through endoproteolytic processing of long precursor forms. Best characterised is cleavage at mono- and dibasic residues, but additional sites also exist. Among these is post-Phe cleavage, first suggested to participate in the processing of chicken progastrin. In order to characterise this new mechanism, antibodies recognising the processing products of post-Phe cleavage of chicken progastrin were produced for radioimmunoassay measurements and immunocytochemistry. High concentrations of the carboxyamidated C-terminus and the N-terminus of gastrin-53 were measured in extracts of the antrum. In addition, significant amounts were detected using an assay specific for the N-terminus of gastrin-30 and with another assay for the C-terminus of the corresponding peptide, gastrin-53(1-23), obtained after cleavage at the Phe(23)-Ala(24) bond of gastrin-53. Colocalisation in antral G-cells of the N-termini of gastrin-53 and gastrin-30 and of the C-terminus of gastrin-53(1-23) was confirmed by immunohistochemistry. Finally, we identified the intact N-terminal 1-23 fragment of gastrin-53 complementary to gastrin-30, verifying endoproteolytic cleavage at the Phe(23)-Ala(24) bond. Taken together, the results support the existence of vertebrate endoprotease cleaving hormone precursors at post-Phe sites.  相似文献   

15.
The sequence of human urotensin II (UII) has been recently established as H-Glu-Thr-Pro-Asp-Cys-Phe-Trp-Lys-Tyr-Cys-Val-OH, and it has been reported that UII is the most potent mammalian vasoconstrictor peptide identified so far. A series of UII analogues was synthesized, and the contractile activity of each compound was studied in vitro using de-endothelialised rat aortic rings. Replacement of each amino acid by an L-alanine or by a D-isomer showed that the N- and C-terminal residues flanking the cyclic region of the amidated peptide were relatively tolerant to substitution. Conversely, replacement of any residue of the cyclic region significantly reduced the contractile activity of the molecule. The octapeptide UII(4-11) was 4 times more potent than UII, indicating that the C-terminal region of the molecule possesses full biological activity. Alanine or D-isomer substitutions in UII(4-11) or in UII(4-11)-NH2, respectively, showed a good correlation with the results obtained for UII-NH2. Disulfide bridge disruption or replacement of the cysteine residues by their D-enantiomers markedly reduced the vasoconstrictor effect of UII and its analogues. In contrast, acetylation of the N-terminal residue of UII and UII-NH2 enhanced the potency of the peptide. Finally, monoiodination of the Tyr6 residue in UII(4-11) increased by 5 fold the potency of the peptide in the aortic ring bioassay. This structure-activity relationship study should provide useful information for the rational design of selective and potent UII receptor agonists and antagonists.  相似文献   

16.
Apolipoprotein C-II (apoC-II) plays a critical role in the metabolism of plasma lipoproteins as an activator for lipoprotein lipase. Human apoC-II consists of 79 amino acid residues (pro-apoC-II). A minor fraction is converted to a mature form by cleavage at the site QQDE releasing the 6 amino-terminal residues. We have cloned and sequenced the cDNA for rat apoC-II from a liver cDNA library using human apoC-II cDNA as a probe. The cDNA encodes a protein of 97 amino acid residues including a signal peptide of 22 amino acid residues. There is approximately 60% similarity between the deduced amino acid sequence of rat apoC-II and other apoC-II sequences presently known (human, monkey, dog, cow, and guinea pig). Compared to these, rat apoC-II is one residue shorter at the carboxyl terminus. Furthermore, there is a deletion of 3 amino acid residues (PQQ) in the highly conserved cleavage site where processing from pro- to mature apoC-II occurs in other species. Accordingly, rat apoC-II isolated from plasma was mainly in the pro-form. Northern blot analyses indicated that rat apoC-II is expressed both in liver and in small intestine.  相似文献   

17.
The cDNA sequences encoding mature and precursor forms of human dihydrolipoamide dehydrogenase (E3) were expressed in Escherichia coli using a lambda PL promoter-driven prokaryotic expression vector. The expressed proteins in total cell extracts were identified by Western blot analysis using anti-pig heart E3 antibody and also by measurement of E3 activity. Most of the expressed human E3 polypeptides (five bands) were found in the insoluble pellet while primarily full-length mature E3 was found in the soluble fraction. About 2% of the total soluble protein was mature human E3 when expressed in wild type E. coli AR120. Since wild type E. coli has its own endogenous E3 activity, the expression of human E3 was performed in a pyruvate dehydrogenase complex-deficient strain of E. coli, JRG1342. The expressed recombinant human E3s in JRG1342 were purified to near homogeneity. The amino-terminal amino acid sequence analysis revealed that the recombinant mature E3 had an expected sequence while the recombinant precursor E3 lost 19 amino acid residues of its 35-amino acid leader sequence presumably due to a proteolytic cleavage. The recombinant mature E3 displayed comparable kinetic properties to those reported for highly purified mammalian E3s. The truncated precursor E3 showed about half of the mature E3 activity. The double-reciprocal plot for the mature E3 in the direction of NAD+ reduction showed parallel lines (ping-pong mechanism) while that for the truncated precursor E3 displayed intersecting lines (sequential mechanism). In the direction of NADH oxidation, the kinetic mechanisms of both E3s were apparently a ping-pong mechanism. These kinetic results showed that the partial 16-amino acid extension in the leader sequence changed the kinetic mechanism of human E3 so that it resembled that of glutathione reductase.  相似文献   

18.
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan.  相似文献   

19.
Metabolic labeling of immature jackbean cotyledons with 14C-amino acids was used to determine the processing steps involved in the assembly of concanavalin A. Pulse-chase experiments and analyses of immunoprecipitated lectin forms indicated a complex series of events involving seven distinct species. The structural relatedness of all of the intermediate species was confirmed by two-dimensional mapping of 125I-tryptic peptides. An initial glycosylated precursor was deglycosylated and cleaved into smaller polypeptides, which subsequently reannealed over a period of 10-27 h. NH2-terminal sequencing of the abundant precursors confirmed that the intact subunit of concanavalin A was formed by the reannealing of two fragments, since the alignment of residues 1-118 and 119-237 was reversed in the final form of the lectin identified in the chase and the precursor first labeled. When the tissue was pulse-chased in the presence of monensin, processing of the glycosylated precursor was inhibited. The weak bases NH4Cl and chloroquine were without effect. Immunocytochemical studies showed that monensin treatment caused the accumulation of immunoreactive material at the cell surface and indicated that the ionophore had induced the secretion of a component normally destined for deposition within the protein bodies. Consideration of the tertiary structure of the glycosylated precursor and mature lectin showed that the entire series of processing events could occur without significant refolding of the initial translational product. Proteolytic events included removal of a peptide from the surface of the precursor molecule that connected the NH2- and COOH-termini of the mature protein. This processing activated the carbohydrate-binding activity of the lectin. The chase data suggest the occurrence of a simultaneous cleavage and formation of a peptide bond, raising the possibility that annealment of the fragments to give rise to the mature subunit involves a transpeptidation event rather than cleavage and subsequent religation.  相似文献   

20.
All Ca2(+)-dependent cell adhesion molecules are synthesized as precursor polypeptides followed by a series of posttranslational modifications including proteolytic cleavage. The mature proteins are formed intracellularly and transported to the cell surface. For uvomorulin the precursor segment is composed of 129-amino acid residues which are cleaved off to generate the 120-kD mature protein. To elucidate the role of proteolytic processing, we constructed cDNAs encoding mutant uvomorulin that could no longer be processed by endogenous proteolytic enzymes and expressed the mutant polypeptides in L cells. Instead of the recognition sites for endogenous proteases, these mutants contained either a recognition site of serum coagulation factor Xa or a new trypsin cleavage site. The intracellular proteolytic processing of mutant polypeptides was inhibited in both cases. The unprocessed polypeptides were efficiently expressed on the cell surface and had other features in common with mature uvomorulin, such as complex formation with catenins and Ca2(+)-dependent resistance to proteolytic degradation. However, cells expressing unprocessed polypeptides showed no uvomorulin-mediated adhesive function. Treatment of the mutant proteins with the respective proteases results in cleavage of the precursor region and the activation of uvomorulin function. However, other proteases although removing the precursor segment were ineffective in activating the adhesive function. These results indicate that correct processing is required for uvomorulin function and emphasize the importance of the amino-terminal region of mature uvomorulin polypeptide in the molecular mechanism of adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号