首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Selenocysteine tRNA [tRNA((Ser)Sec)] is charged with serine by the same seryl-tRNA synthetase (SerRS) as the canonical serine tRNAs. Using site-directed mutagenesis, we have introduced a series of mutations into human tRNA((Ser)Sec) and tRNA(Ser) in order to study the identity elements of tRNA((Ser)Sec) for serylation and the effect of the orientation of the extra arm. Our results show that the long extra arm is one of the major identity elements for both tRNA(Ser) and tRNA((Ser)Sec) and gel retardation assays reveal that it appears to be a prerequisite for binding to the cognate synthetase. The long extra arm functions in an orientation-dependent, but not in a sequence-specific manner. The discriminator base G73 is another important identity element of tRNA((Ser)Sec), whereas the T- and D-arms play a minor role for the serylation efficiency.  相似文献   

3.
Aminoacyl-tRNA synthetases catalyze the specific charging of amino acid residues on tRNAs. Accurate recognition of a tRNA by its synthetase is achieved through sequence and structural signalling. It has been shown that tRNAs undergo large conformational changes upon binding to enzymes, but little is known about the conformational rearrangements in tRNA-bound synthetases. To address this issue the crystal structure of the dimeric class II aspartyl-tRNA synthetase (AspRS) from yeast was solved in its free form and compared to that of the protein associated to the cognate tRNA(Asp). The use of an enzyme truncated in N terminus improved the crystal quality and allowed us to solve and refine the structure of free AspRS at 2.3 A resolution. For the first time, snapshots are available for the different macromolecular states belonging to the same tRNA aminoacylation system, comprising the free forms for tRNA and enzyme, and their complex. Overall, the synthetase is less affected by the association than the tRNA, although significant local changes occur. They concern a rotation of the anticodon binding domain and a movement in the hinge region which connects the anticodon binding and active-site domains in the AspRS subunit. The most dramatic differences are observed in two evolutionary conserved loops. Both are in the neighborhood of the catalytic site and are of importance for ligand binding. The combination of this structural analysis with mutagenesis and enzymology data points to a tRNA binding process that starts by a recognition event between the tRNA anticodon loop and the synthetase anticodon binding module.  相似文献   

4.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

5.
6.
7.
8.
9.
The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates additional strategies used for specific tRNA selection. The enzyme specifically recognizes the D-loop and the anticodon of the tRNA, and the mutually induced fit produces a conformation of the anticodon loop never seen before. Moreover, the anticodon binding triggers conformational changes in the catalytic center of the protein. The comparison with the 2.9 A structure of a binary complex formed by yeast arginyl-tRNA synthetase and tRNA(Arg) reveals that L-arginine binding controls the correct positioning of the CCA end of the tRNA(Arg). Important structural changes induced by substrate binding are observed in the enzyme. Several key residues of the active site play multiple roles in the catalytic pathway and thus highlight the structural dynamics of the aminoacylation reaction.  相似文献   

10.
In higher plants, one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and are imported into mitochondria. This process appears to be highly specific for some tRNAs, but the factors that interact with tRNAs before and/or during import, as well as the signals present on the tRNAs, still need to be identified. The rare experiments performed so far suggest that, besides the probable implication of aminoacyl-tRNA synthetases, at least one additional import factor and/or structural features shared by imported tRNAs must be involved in plant mitochondrial tRNA import. To look for determinants that direct tRNA import into higher plant mitochondria, we have transformed BY2 tobacco cells with Arabidopsis thaliana cytosolic tRNA(Val)(AAC) carrying various mutations. The nucleotide replacements introduced in this naturally imported tRNA correspond to the anticodon and/or D-domain of the non-imported cytosolic tRNA(Met-e). Unlike the wild-type tRNA(Val)(AAC), a mutant tRNA(Val) carrying a methionine CAU anticodon that switches the aminoacylation of this tRNA from valine to methionine is not present in the mitochondrial fraction. Furthermore, mutant tRNAs(Val) carrying the D-domain of the tRNA(Met-e), although still efficiently recognized by the valyl-tRNA synthetase, are not imported any more into mitochondria. These data demonstrate that in plants, besides identity elements required for the recognition by the cognate aminoacyl-tRNA synthetase, tRNA molecules contain other determinants that are essential for mitochondrial import selectivity. Indeed, this suggests that the tRNA import mechanism occurring in plant mitochondria may be different from what has been described so far in yeast or in protozoa.  相似文献   

11.
The tRNA-like structure of turnip yellow mosaic virus is known to be efficiently recognized and aminoacylated by valyl-tRNA synthetase. The present work reports domains in the isolated tRNA-like fragment (159 terminal nucleotides at the 3'-end of the two viral RNAs) in contact with purified yeast valyl-tRNA synthetase. These domains were determined in protection experiments using chemical and enzymatic structural probes. In addition, new data, re-enforcing the validity of the tertiary folding model for the native RNA, are given. In particular, at the level of the amino acid accepting arm it was found that the two phosphate groups flanking the three guanine residues of loop I are inaccessible to ethylnitrosourea. This is in agreement with a higher-order structure of this loop involving "pseudo knotting", as proposed by Rietveld et al. (1982). Valyl-tRNA synthetase efficiently protects the viral RNA against digestion by single-strand-specific S1 nuclease at the level of the anticodon loop. With cobra venom ribonuclease, specific for double-stranded regions of RNA, protection was detected on both sides of the anticodon arm and at the 5'-ends of loop I, a region that is involved in the building up of the acceptor arm. Loop II, which is topologically homologous to the T-loop of canonical tRNA was likewise protected. Weak protection was observed between arms I and II, and at the 3'-side of arm V. This arm, located at the 5'-side of arm IV (homologous to the D-arm of tRNA), does not participate in the pseudo-knotted model of the valine acceptor arm. Ethylnitrosourea was used to determine the phosphates of the tRNA-like structure in close contact with the synthetase. These are grouped in several stretches scattered over the RNA molecule. In agreement with the nuclease digestion results, protected phosphates are located in arms I, II, and III. Additionally, this chemical probe permits detection of other protected phosphates on the 3'-side of arm IV and on both sides of arm V. When displayed in the three-dimensional model of the tRNA-like structure, protected areas are localized on both limbs of the L-shaped RNA. It appears that valyl-tRNA synthetase embraces the entire tRNA-like structure. This is reminiscent of the interaction model of canonical yeast tRNAVal with its cognate synthetase.  相似文献   

12.
tRNA(Phe) in which the adenine and cytosine rings in the aminoacyl arm and in the anticodon loop were converted to alkylating derivatives by mild treatment with methyl chlorotetrolate was used to study the tRNA(Phe)-yeast phenylalanyl-tRNA(Phe) synthetase interaction. At neutral pH, modified tRNA inhibited the enzyme competitively. At pH 9 this binding is accompanied by irreversible inactivation of the enzyme due to alkylation of the alpha subunit of the synthetase. Such a derivatization of tRNA could probably be used to investigate the interaction of other tRNAs with their cognate synthetases.  相似文献   

13.
Transfer RNA (tRNA) identify is maintained by the highly specific interaction of a few defined nucleotides or groups of nucleotides, called identity elements, with the cognate aminoacyl-tRNA synthetase, and by nonproductive interactions with the other 19 aminoacyl-tRNA synthetases. Most tRNAs have a set of identity elements in at least two locations, commonly in the anticodon loop or in the acceptor stem, and at the discriminator base position 73. We have used T7 RNA polymerase transcribed tRNAs to demonstrate that the sole replacement of the discriminator base A73 of human tRNA(Leu) with the tRNA(Ser)-specific G generates a complete identity switch to serine acceptance. The reverse experiment, the exchange of G73 in human tRNA(Ser) for the tRNA(Leu-specific A, causes a total loss of serine specificity without creating any leucine acceptance. These results suggest that the discriminator base A73 of human tRNA(Leu) alone protects this tRNA against serylation by seryl-tRNA synthetase. This is the first report of a complete identity switch caused by an exchange of the discriminator base alone.  相似文献   

14.
15.
Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNA(Pyl). The genes for tRNA(Pyl) (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNA(Pyl) identity elements were determined by measuring the ability of 24 mutant tRNA(Pyl) species to be aminoacylated with the pyrrolysine analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1.C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNA(Pyl) predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNA(Pyl) structure contains the highly conserved T-loop contact U54.A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNA(Pyl) anticodon was shown not to be important for recognition by bacterial PylRS.  相似文献   

16.
Recent evidence indicates that the anticodon may often play a crucial role in selection of tRNAs by aminoacyl-tRNA synthetases. In order to quantitate the contribution of the anticodon to discrimination between cognate and noncognate tRNAs by E. coli threonyl-tRNA synthetase, derivatives of the E. coli elongator methionine tRNA (tRNA(mMet)) containing wild type and threonine anticodons have been synthesized in vitro and assayed for threonine acceptor activity. Substitution of the threonine anticodon GGU for the methionine anticodon CAU increased the threonine acceptor activity of tRNA(mMet) by four orders of magnitude while reducing methionine acceptor activity by an even greater amount. These results indicate that the anticodon is the major element which determines the identity of both threonine and methionine tRNAs.  相似文献   

17.
18.
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.  相似文献   

19.
Contacts between the tRNA-like domain in brome mosaic virus RNA and yeast tyrosyl-tRNA synthetase have been determined by footprinting with enzymatic probes. Regions in which the synthetase caused protections indicative of direct interaction coincide with loci identified by mutational studies as being important for efficient tyrosylation [Dreher, T. W. & Hall, T. C. (1988) J. Mol. Biol. 201, 41-55]. Additional extensive contacts were found upstream of the core of the tRNA-like structure. In parallel, the contacts of yeast tRNATyr with its cognate synthetase were determined by the same methodology and comparison of protected nucleotides in the two RNAs has permitted the assignment of structural analogies between domains in the viral tRNA-like structure and tRNATyr. Amino acid acceptor stems are similarly recognized by yeast tyrosyl-tRNA synthetase in the two RNAs, indicating that the pseudoknotted fold in the viral RNA does not perturb the interaction with the synthetase. A further important analogy appears between the anticodon/D arm of the L-conformation of tRNAs and a complex branched arm of the viral tRNA-like structure. However, no apparent anticodon triplet exists in the viral RNA. These results suggest that the major determinants for tyrosylation of yeast tRNATyr lie outside the anticodon stem and loop, possibly in the amino acid acceptor stem.  相似文献   

20.
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs. Specific aminoacylation is dictated by a set of recognition elements that mark tRNA molecules as substrates for particular synthetases. Escherichia coli prolyl-tRNA synthetase (ProRS) has previously been shown to recognize specific bases of tRNA(Pro) in both the anticodon domain, which mediate initial complex formation, and in the acceptor stem, which is proximal to the site of catalysis. In this work, we unambiguously define the molecular interaction between E. coli ProRS and the acceptor stem of cognate tRNA(Pro). Oxidative cross-linking studies using 2'-deoxy-8-oxo-7,8-dihydroguanosine-containing proline tRNAs identify a direct interaction between a critical arginine residue (R144) in the active site of E. coli ProRS and the G72 residue in the acceptor stem of tRNA(Pro). Assays conducted with motif 2 loop variants and tRNA mutants wherein specific atomic groups of G72 were deleted, are consistent with a functionally important hydrogen-bonding network between R144 and the major groove of G72. These results taken together with previous studies suggest that breaking this key contact uncouples the allosteric interaction between the anticodon domain and the aminoacylation active site, providing new insights into the communication network that governs the synthetase-tRNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号