首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important link has recently been shown in vivo between beta-cell O-linked protein glycosylation and beta-cell apoptosis, with hyperglycemia having been demonstrated to reversibly increase beta-cell O-linked protein glycosylation by providing substrate for the glucosamine pathway. In contrast, the same study showed that the administration of streptozotocin to rats prior to the induction of hyperglycemia results in irreversible increases in O-glycosylation and subsequent beta-cell apoptosis. In light of these data, we investigated beta-cell O-glycosylation in vitro by exposing isolated rat islets to high glucose, glucosamine, or streptozotocin and analyzing the pattern of O-glycosylated proteins present. All three compounds acutely increased O-glycosylation of a predominate 135-kDa protein (p135); however, their ability to stimulate p135 O-glycosylation was only consistently observed when islets were isolated in the presence of high glucose and 1 mM L-glutamine. Islets isolated in low glucose and no added L-glutamine demonstrated no consistent increase in p135 O-glycosylation in response to glucose, glucosamine, or streptozotocin. These data suggest that during islet isolation, beta-cell enzymes responsible for regulating p135 O-glycosylation may be adversely affected by the absence of high glucose and glutamine, which together are necessary for O-linked N-acetylglucosamine synthesis. We propose that the combination of high glucose and glutamine during islet isolation generates UDP-N-acetylglucosamine and O-linked N-acetylglucosamine, thus providing substrate protection for these enzymes and preserving the ability of isolated islets to O-glycosylate p135.  相似文献   

2.
The hexosamine biosynthesis pathway plays a role in the modification of cellular proteins via the provision of substrate for addition of O-linked N-acetylglucosamine (GlcNAc). The relative importance of the GlcNAc modification of proteins to insulin secretion from pancreatic beta-cells has not been investigated and so remains unclear. In the present study, we show that inhibition of the hexosamine biosynthesis pathway decreases insulin secretion from mouse islets in response to a number of secretagogues, including glucose. This impairment in beta-cell function could not be attributed to reduced islet insulin content, altered ATP levels, or cell death and was restored with the addition of N-acetylglucosamine, a substrate that enters the pathway below the point of inhibition. Western blot analysis revealed that decreased islet protein glycosylation paralleled the decrease in insulin secretion following inhibition of the pathway. In conclusion, the data suggest a role for the hexosamine biosynthesis pathway in regulating the secretion of insulin by altering protein glycosylation. This finding may have implications for the development of type 2 diabetes, as chronic increase in flux through the hexosamine biosynthesis pathway may lead to the deterioration of beta-cell function via abnormal protein glycosylation.  相似文献   

3.
The post-translational modifications of Ser and Thr residues by O-linked beta-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic beta cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in beta cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased OGlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic beta cells. This observed beta cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with beta cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during beta cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic beta cell dysfunction.  相似文献   

4.
We have previously shown that diabetogenic antibiotic streptozotocin (STZ), an analog of N-acetylglucosamine (GlcNAc), inhibits the enzyme O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase) which is responsible for the removal of O-GlcNAc from proteins. Alloxan, another beta-cell toxin is a uracil analog. Since the O-GlcNAc transferase (OGT) uses UDP-GlcNAc as a substrate, we investigated whether alloxan might interfere with the process of protein O-glycosylation by blocking OGT, a very abundant enzyme in beta-cells. In isolated pancreatic islets, alloxan almost completely blocked both glucosamine-induced and STZ-induced protein O-GlcNAcylation, suggesting that alloxan indeed was inhibiting (OGT). In order to show definitively that alloxan was inhibiting OGT activity, recombinant OGT was incubated with 0-10 mM alloxan, and OGT activity was measured directly by quantitating UDP-[(3)H]-GlcNAc incorporation into the recombinant protein substrate, nucleoporin p62. Under these conditions, OGT activity was completely inhibited by 1 mM alloxan with half-maximal inhibition achieved at a concentration of 0.1 mM alloxan. Together, these data demonstrate that alloxan is an inhibitor of OGT, and as such, is the first OGT inhibitor described.  相似文献   

5.
6.
The family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) is responsible for initiating mucin-type O-linked glycosylation in higher eukaryotes. To begin to examine the biological role of O-linked glycosylation, mammalian cells were treated with a small molecule inhibitor (designated 1-68A, Ref. 15) of ppGaNTase activity. NIH3T3 cells exposed to the inhibitor were shown to undergo a significant reduction in cell surface O-glycosylation as detected by staining with jacalin and peanut agglutinin lectins after 30 min of treatment; no reduction in staining using antibodies to O-linked N-acetylglucosamine or the lectin concanavalin A was detected. Apoptosis was also observed in treated cells after 45 min of exposure, ostensibly following the O-glycosylation reduction. Overexpression of several different ppGaNTase isoforms restored cell surface O-glycosylation and rescued inhibitor-induced apoptosis. Additionally, mouse embryonic mandibular organ cultures exposed to 1-68A developed abnormally, presumably because of epithelial and mesenchymal apoptosis that followed a reduction in jacalin and peanut agglutinin staining. Our studies suggest that mucin-type O-linked glycosylation may be required for normal development and that ppGaNTases may play a role in the regulation of apoptosis.  相似文献   

7.
Spontaneous diabetes in the domestic pig, an animal suitable for metabolic and endocrine studies and for experimental surgery, is extremely rare. In this study we have compared the diabetogenic response of various doses of streptozotocin in comparison to surgically induced diabetes. Streptozotocin in a low dose, 35 mg/kg body weight did not influence glucose metabolism while an intermediate dose, 85 mg/kg, resulted in a transient diabetic reaction. Streptozotocin, 100-150 mg/kg body weight, caused a complete and permanent diabetes. Animals made diabetic by means of pancreatectomy did not survive more than 10 days due to their poor general condition and diabetes. Streptozotocin induced diabetic animals survived with insulin treatment up to seven months. The results show that juvenile pigs made diabetic with 100-150 mg/kg body weight of streptozotocin may be useful in experimental work on glucose-, insulin- and C-peptide-metabolism in a large animal. Therefore it is potentially useful in pancreatic transplantation research.  相似文献   

8.
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosac-charides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.  相似文献   

9.
While only about ten percent of the databank entries are defined as glycoproteins, it has been estimated recently that more than half of all proteins are glycoproteins. Mucin-type O-glycosylation is a widespread post-translational modification of proteins found in the entire animal kingdom, but also in higher plants. The structural complexity of the chains initiated by O-linked GalNAc exceeds that of N-linked chains by far. The process during which serine and threonine residues of proteins become modified is confined to the cis to trans Golgi compartments. The initiation of this process by peptidyl GalNAc-transferases is ruled by the sequence context of putative O-glycosylation sites, but also by epigenetic regulatory mechanisms, which can be mediated by enzyme competition. The cellular repertoir of glycosyltransferases with their distinct donor sugar and acceptor sugar specificities, their sequential action at highly-ordered surfaces, and their localizations in subcompartments of the Golgi finally determine the cell-specific O-glycosylation profile. Dramatic alterations of the glycosylation machinery are observed in cancer cells, resulting in aberrantly O-glycosylated proteins that expose previously masked peptide motifs and new antigenic targets. The functional aspects of O-linked glycans, which comprise among many others their potential role in sorting and secretion of glycoproteins, their influence on protein conformation, and their multifarious involvement in cell adhesion and immunological processes, appear as complex as their structures.  相似文献   

10.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

11.
Polyenoylphosphatidylcholine (PPC), a phosphatidylcholine-rich phospholipid extracted from soybean, has been reported to protect liver cells from alloxan-induced cytotoxicity. The present study aimed to investigate whether PPC protects pancreatic beta-cells from the cytotoxic injury induced by streptozotocin, thus preserving insulin synthesis and secretion. beta-Cells of the PPC-treated rats showed a significant reduction of cell death with lesser destruction of plasma membrane on streptozotocin insult. They demonstrated a rapid recovery of GLUT-2 expression, whereas almost irreversible depletion of membrane-bound GLUT-2 was seen in beta-cells of the rats treated with only streptozotocin. A similar cytoprotective effect of PPC was also monitored in the PPC-pretreated MIN6 cells. These beta-cells retained their ability to synthesize and secrete insulin and no alteration of glucose metabolism was detected. These results strongly suggest that PPC plays important roles not only in protecting beta-cells against cytotoxicity but also in maintaining their insulin synthesis and secretion for normal glucose homeostasis.  相似文献   

12.
BackgroundIn the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival.MethodsThe effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated.ResultsNeither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p < 0.05 to p < 0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2 +)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p < 0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells.ConclusionThese data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function.General significanceModulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.  相似文献   

13.
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.  相似文献   

14.
O-linked N-acetylglucosamine (O-GlcNAc) is attached to and detached from proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. It has been proposed that streptozotocin induces pancreatic beta-cell death by blocking O-GlcNAcase and increasing O-GlcNAc. To elucidate the relationship between cytosolic O-GlcNAc accumulation and beta-cell death, we treated beta-cell lines HIT-T15 and Min6 with glucosamine. Glucosamine markedly reduced cell viability in both cell lines only at 10 mM. The measurement of cytosolic O-GlcNAc under glucosamine treatment revealed that O-GlcNAc accumulation was observed even at 2 mM glucosamine and maximized at 5 mM, but did not occur very well at 10 mM. Furthermore, 100 microM PUGNAc, an inhibitor of O-GlcNAcase, increased cytosolic O-GlcNAc but did not induce cell death in these cells. Therefore, no correlation between accumulation of cytosolic O-GlcNAc and beta-cell death was suggested. Alternatively, inosine partially rescued cell death induced by glucosamine in Min6 cells, suggesting that energy depletion partly contributes to beta-cell death by glucosamine.  相似文献   

15.
16.
Several nuclear and cytoplasmic proteins in metazoans are modified by O-linked N-acetylglucosamine (O-GlcNAc). This modification is dynamic and reversible similar to phosphorylation and is catalyzed by the O-linked GlcNAc transferase (OGT). Hyperglycemia has been shown to increase O-GlcNAc levels in pancreatic beta cells, which appears to interfere with beta-cell function. To obtain a better understanding of the role of O-linked GlcNAc modification in beta cells, we have isolated OGT interacting proteins from a cDNA library made from the mouse insulinoma MIN6 cell line. We describe here the identification of Ataxin-10, encoded by the SCA10 (spinocerebellar ataxia type 10) gene as an OGT interacting protein. Mutations in the SCA10 gene cause progressive cerebellar ataxias and seizures. We demonstrate that SCA10 interacts with OGT in vivo and is modified by O-linked glycosylation in MIN6 cells, suggesting a novel role for the Ataxin-10 protein in pancreatic beta cells.  相似文献   

17.
Alloxan and streptozotocin are widely used to induce experimental diabetes in animals. The mechanism of their action in B cells of the pancreas has been intensively investigated and now is quite well understood. The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin. Alloxan and the product of its reduction, dialuric acid, establish a redox cycle with the formation of superoxide radicals. These radicals undergo dismutation to hydrogen peroxide. Thereafter highly reactive hydroxyl radicals are formed by the Fenton reaction. The action of reactive oxygen species with a simultaneous massive increase in cytosolic calcium concentration causes rapid destruction of B cells. Streptozotocin enters the B cell via a glucose transporter (GLUT2) and causes alkylation of DNA. DNA damage induces activation of poly ADP-ribosylation, a process that is more important for the diabetogenicity of streptozotocin than DNA damage itself. Poly ADP-ribosylation leads to depletion of cellular NAD+ and ATP. Enhanced ATP dephosphorylation after streptozotocin treatment supplies a substrate for xanthine oxidase resulting in the formation of superoxide radicals. Consequently, hydrogen peroxide and hydroxyl radicals are also generated. Furthermore, streptozotocin liberates toxic amounts of nitric oxide that inhibits aconitase activity and participates in DNA damage. As a result of the streptozotocin action, B cells undergo the destruction by necrosis.  相似文献   

18.
Many nuclear and cytoplasmic proteins are O-glycosylated on serine or threonine residues with the monosaccharide beta-N-acetylglucosamine, which is then termed O-linked N-acetylglucosamine (O-GlcNAc). It has been shown that abnormal O-GlcNAc modification (O-GlcNAcylation) of proteins is one of the causes of insulin resistance and diabetic complications. In this study, in order to examine the relationship between O-GlcNAcylation of proteins and glucose-stimulated insulin secretion in noninsulin-dependent type (type 2) diabetes, we investigated the level of O-GlcNAcylation of proteins, especially that of PDX-1, and the expression of O-GlcNAc transferase in Goto-Kakizaki (GK) rats, which are an animal model of type-2 diabetes. By immunoblot and immunohistochemical analyses, the expression of O-GlcNAc transferase protein and O-GlcNAc-modified proteins in whole pancreas and islets of Langerhans of 15-week-old diabetic GK rats and nondiabetic Wistar rats was examined. The expression of O-GlcNAc transferase at the protein level and O-GlcNAc transferase activity were increased significantly in the diabetic pancreas and islets. The diabetic pancreas and islets also showed an increase in total cellular O-GlcNAc-modified proteins. O-GlcNAcylation of PDX-1 was also increased. In the diabetic GK rats, significant increases in the immunoreactivities of both O-GlcNAc and O-GlcNAc transferase were observed. PUGNAc, an inhibitor of O-GlcNAcase, induced an elevation of O-GlcNAc level and a decrease of glucose-stimulated insulin secretion in isolated islets. These results indicate that elevation of the O-GlcNAcylation of proteins leads to deterioration of insulin secretion in the pancreas of diabetic GK rats, further providing evidence for the role of O-GlcNAc in the insulin secretion.  相似文献   

19.
20.
The O-linked glycosylation of highly purified Drosophila 26S proteasome has been analyzed by immunological and lectin-binding methods. Five regulatory complex subunits and at least nine catalytic core subunits were recognized by two different monoclonal antibodies specific for O-linked N-acetylglucosamine-modified proteins, and by wheat germ agglutinin, which is specific for the N-acetylglucosamine sugar side-chain. The specificity of these reactions has been proved by competition studies with free N-acetylglucosamine. Three ATPase subunits of the regulatory complex, which are O-glycosylated, have previously been shown [FEBS Lett. 430 (1998) 269] to occur in phosphorylated form as well, indicating that several different post-translational modifications, with distinct regulatory potential, may be present on the same subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号