首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The role of copper in pig kidney diamine oxidase has been probed by examining the effects of potential Cu(II) ligands on the spectroscopic and catalytic properties of the enzyme. In the presence of azide and thiocyanate, new absorption bands are evident at 410 nm (epsilon = 6300 M-1 cm-1) and 365 nm (epsilon = 3000 M-1 cm-1), respectively. These bands are assigned as ligand-to-metal charge-transfer transitions, N3-/SCN- leads to Cu(II). One anion/Cu(II) is coordinated in an equitorial position. Anion binding can be completely reversed by dialysis. The equilibrium constants for diamine oxidase-anion complex formation are 134 M-1 (N3-) and 55 M-1 (SCN-). Azide and thiocyanate are linear uncompetitive inhibitors with respect to the amine substrate when O2 is present at saturating concentrations. Taken together, the data are consistent with a functional role for Cu(II) in diamine oxidase catalysis.  相似文献   

3.
The nucleocapsid (NC) protein (p15) of the human immunodeficiency virus (HIV) has been cloned and overproduced (under the control of a phage T7 promoter) in soluble form in an Escherichia coli host. The soluble NC protein is a fusion protein containing 15 amino acids from the T7 gene 10 and 7 amino acids from the HIV p24 protein at the N-terminus to make a protein of 171 amino acids. The plasmid containing the fusion gene is designated p15DF. A homogeneous product has been isolated from the induced cells and, when isolated under aerobic conditions, contains 0.3-0.5 mol of Zn/mol of protein and has only 2 titratable SH groups. Reduction and refolding in the presence of Zn(II) yields a protein containing 2.0 mol of Zn/mol of protein and 6 titratable SH groups. On the other hand, if the cells are sonicated in 2 mM CdCl2 and purified at pH 5.0, an unoxidized protein containing 2 mol of Cd/mol of protein is obtained. The Cd(II) ions can be exchanged with Zn(II), Co(II), or 113Cd(II). The Co(II)2 NC protein shows d-d electronic transitions at 695 nm [epsilon = 675 M-1 cm-1 per Co(II)] and 640 nm [epsilon = 825 M-1 cm-1 per Co(II)] compatible with regular tetrahedral geometry around both Co(II) ions. The Co(II)2 and Cd(II)2 NC proteins show intense charge-transfer bands in the near-UV, at 355 nm (epsilon = approximately 4000 M-1 cm-1) and 310 nm (epsilon = approximately 8000 M-1 cm-1) for the Co(II) protein and 255 nm (epsilon = approximately 10(4) M-1 cm-1) for the Cd(II)2 NC protein, compatible with -S- coordination. 113Cd NMR of the 113Cd(II)2 NC protein shows two 113Cd NMR signals at 659 and 640 ppm, respectively, each integrating to approximately 1 Cd(II) ion. The downfield chemical shifts suggest coordination of each 113Cd(II) ion to 3 sulfur donor atoms. The spectroscopic data fully support the prediction that the NC protein binds metal ions to each of the tandem repeats of the -Cys-X2-Cys-X4-His-X4-Cys- sequence contained in the N-terminal half of the molecule. 113Cd NMR shows, however, that the sites are not identical. Isolation of the NC protein under standard aerobic conditions results in oxidation of the sulfhydryl groups and loss of the coordinated Zn(II) ions, while preparation of the NC protein as the Cd(II) derivative at low pH protects the sulfhydryl groups from oxidation.  相似文献   

4.
The reactions with N,N-diethyldithiocarbamate (DDC) of zinc, cobalt and copper carbonic anhydrase from bovine erythrocytes were investigated. The native zinc enzyme was inhibited by DDC, but no removal of zinc could be detected even at a very high [ligand]/[protein] ratio. At identical pH values a larger inhibitory effect was found for the cobalt enzyme. The metal was removed by DDC from the protein at pH less than 7.0. No cobalt removal occurred at pH 10, where a stable ternary complex with the enzyme-bound Co(II) was detected. Its optical and EPR spectra are indicative of five-coordinate Co(II). The reaction of the Cu(II) enzyme with stoichiometric chelating agent was marked by the appearance of an electronic transition at 390 nm (epsilon = 4300 M-1 X cm-1). Metal removal from the copper enzyme readily occurred as the ligand was in excess over the metal, with parallel appearance of a band at 440 nm, which was attributed to the free Cu(II)-DDC complex. Also, in the case of the copper enzyme an alkaline pH was found to stabilize the ternary adduct with the diagnostic 390 nm band. EPR spectra showed that the ternary adduct is a mixture of two species, both characterized by the presence in the EPR spectrum of a superhyperfine structure from two protein nitrogens and by a low g parallel value, indicative of coordination to sulfur ligands. It is suggested that the two species contain the metal as penta- and hexacoordinated, respectively. Measurements of the longitudinal relaxation time, T1, of the water protons suggested that water coordination is retained in the latter case. Hexacoordination with retention of water is also proposed for the Cu(II) derivatives with the bidentate oxalate and bicarbonate anions, unlike the corresponding Co(II) derivatives, which are pentacoordinated. Different coordination of Co(II) and Cu(II) adducts may be relevant to the difference of activity of the two substituted enzymes.  相似文献   

5.
The Fur apoprotein has been purified and reconstituted with Co2+ and Mn2+ ions. These samples have been analyzed by UV-visible, EPR, and 1H NMR spectroscopies, by XAS, and by magnetization measurements. The apo-Fur protein is able to bind one metal dication (Co2+ or Mn2+) per monomer. A saturation magnetization study confirms the presence of a high-spin metal dication [Mn(II) S = 5/2 and Co(II) S = 3/2]. The two metal ions per Fur dimer are not in magnetic interaction (|J| < 0.1 cm-1 ). The UV-visible spectrum of the cobalt-substituted form (Co-Fur) presents two main bands at 660 nm and 540(br) nm with epsilon540 nm = 65 M-1 cm-1. The EPR spectrum gives the following g values: gx = 5.0(5), gy = 4.0(2), and gz = 2. 3(1), which are in accordance with a nearly axial (E/D < 0.11) site. The value of 55 cm-1 for the splitting (Delta) between the ground and the first excited state has been derived from an EPR saturation study and is in agreement with magnetization data. The EXAFS data of Co-Fur indicate a metal environment comprising five nitrogen/oxygen atoms at 2.11 A, the absence of sulfur, and the presence of histidines as ligands. 1H NMR of Co-Fur in H2O and D2O shows at least two exchangeable signals coming from histidine NH protons and shows the signature of carboxylate group(s). The combined spectroscopic data allow us to propose that the main metal site of Fur in Co-Fur contains at least two histidines, at least one aspartate or glutamate, and no cysteine as ligands and is in an axially distorted octahedral environment.  相似文献   

6.
The ground state magnetic properties of manganese superoxide dismutase from Thermus thermophilus in its native and reduced forms have been determined using saturation magnetization data. Parallel EPR measurements were used to verify that commonly encountered paramagnetic impurities were at low concentration relative to the metalloprotein. The native enzyme contains high spin Mn(III) (S = 2) with D = +2.44(5) cm-1 and E/D = 0. The reduced enzyme contains high spin Mn(II) (S = 5/2) with D = +0.50(5) cm-1 and E/D = 0.027. These results are in keeping with the suggestions of several previous groups of workers concerning the permissible oxidation and spin states of the manganese, but the zero field splitting parameters are unlike those of known manganese model compounds. In addition, the extinction coefficient for the visible region absorption maximum of the native enzyme and the corresponding difference extinction coefficient (native minus reduced) have been measured using saturation magnetization data to quantitate Mn(III) present. The result, epsilon 480 = 950(80) M-1 cm-1 (delta epsilon 480 = 740(60) M-1 cm-1) agrees with the previously reported value of epsilon 480 = 910 M-1 cm-1 found by total manganese determination (Sato, S. and Nakazawa, K. (1978) J. Biochem. 83, 1165-1171). The wide variation in the reported visible region extinction coefficients of manganese superoxide dismutases from different sources is discussed.  相似文献   

7.
Co(II)-glyoxalase I has been prepared by reactivation of apoenzyme from human erythrocytes with Co2+. The visible absorption spectrum showed maxima at 493 and 515 nm and shoulders at 465 and 615 nm. The absorption coefficients at 493 and 515 nm were 35 and 33 M-1 cm-1/cobalt ion, respectively; i.e. 70 and 66 M-1 cm-1 for the dimeric metalloprotein. The product of the enzymatic reaction, S-D-lactoylglutathione, although binding to Co(II)-glyoxalase I, had no demonstrable effect on the visible absorption spectrum, indicating binding outside the first coordination sphere of the metal. The EPR spectrum at 3.9 K was characterized by g1 approximately 6.6, g2 approximately 3.0, and g3 approximately 2.5, and eight hyperfine lines with A1 = 0.025 cm-1. Binding of the strong competitive inhibitor S-p-bromobenzylglutathione to Co(II)-glyoxalase I gave three g values: 6.3, 3.4, and 2.5, indicating a conformational change affecting the environment of the metal ion. Both optical and EPR spectra strongly suggest a high spin Co2+ with octahedral coordination in the active site of the enzyme. The similarities in kinetic properties between native Zn(II)-glyoxalase I and enzyme substituted with Mg2+, Mn2+, or Co2+ is consistent with the view that these enzyme forms have the same metal coordination in the protein.  相似文献   

8.
Dicopper complexes of the following benzimidazole-containing ligands have been studied as possible models for the active site of hemocyanin: EDTB (N,N,N',N'-tetrakis-(2-benzimidazolylmethyl)-1,2-ethanediamine), EGTB (1,1,10,10-tetrakis-(2-benzimidazolylmethyl)-1,10-diaza-4,7- dioxadecane), and MEGTB (1,1,10,10-tetrakis-(1-methylbenzimidazol-2-y lmethyl)-1,10-diaza-4,7-dioxadecane). The initial oxygenation product of Cu2(EDTB)(ClO4)2 in Me2SO gives optical absorption maxima at 315 nm (epsilon = 3750 M-1 cm-1) and 690 nm (epsilon = 100 M-1 cm-1). The fluorescence emission intensities of Cu2(EDTB)(ClO4)2 at 400 and 700 nm (excitation at 350 nm) decreases rapidly on exposure to air. This suggests oxidation of Cu2(I) to Cu2(II). The x-ray absorption edge spectra suggest that both coppers in the oxygenation product, analyzed as Cu2(EDTB)(ClO4)2(O).3H2O, are Cu(II). From spectrophotometric titration of Cu2(MEGTB)Cl4 with azide, formation constant of the Cu2(MEGTB)N3Cl3 complex has been obtained. Data from cyclic voltammetry experiments suggest that in the presence of azide, Cu(II)(N3)Cu(II) species is present.  相似文献   

9.
The Type 3 copper site is intact but labile in Type 2-depleted laccase   总被引:1,自引:0,他引:1  
We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of this protein. Anaerobic reductive titrations with Ru(NH)3)6(2)+ and Cr(II)aq ions established the presence of three electron-accepting centers, which are reduced in a complex manner. Treatment of T2D laccase with a 70-fold excess of H2O2 induced a new shoulder at 330 nm (delta epsilon = 660 M-1 cm-1), as well as intensity perturbations at 280 and 615 nm. Comparison of difference spectra show that this 330-nm band derives from a Type 3 copper-bound peroxide and not from a reoxidized Type 3 site. Dioxygen reoxidation of ascorbate-reduced T2D laccase produced new difference bands at 330 nm (delta epsilon = 770 M-1 cm-1) and 270 nm (delta epsilon = 13,000 M-1 cm-1), the former assigned to a bound peroxide which is a dioxygen reduction intermediate. In the corresponding epr spectrum of this material new Cu(II) g parallel features (A parallel approximately 130 G) indicative of an isolated copper ion and a triplet signal near 3,400 G were observed, originating from the Type 3 sites of separate T2D laccase molecules. Reoxidation by ferricyanide or by dioxygen as mediated by iron hexacyanide did not produce these changes. Thus the magnetism of the reoxidized Type 3 site in T2D laccase can be perturbed as a consequence of aerobic turnover. The suggestion is advanced that there are presently three forms of T2D laccase, possibly metastable conformational isotypes, accounting for the apparently contradictory reports on the properties of this protein.  相似文献   

10.
A ferredoxin containing only one [Fe4S4] cluster was purified from Clostridium thermoaceticum. It has a molecular weight of about 7,300, a partial specific volume of 0.67, and an isoelectric point of 3.25. Its absorption spectrum has two maxima at 390 nm (epsilon = 16.8 X 10(3)M-1cm-1) and at 280 nm (epsilon = 24.2 X 10(3)M-1cm-1). The absorption at 390 nm is almost half that of other clostridial ferredoxins, which have two [Fe4S4] clusters, and is similar to other ferredoxins with only one [Fe4S4] cluster. The ferredoxin had high thermal stability and retained over 50% of its activity after treatment at 80 degrees C. It functions in the transfer of electrons from pyruvate to nicotinamide adenine dinucleotide phosphate (NADP), which indicates the presence of pyruvate:ferredoxin oxidoreductase and reduced ferredoxin-NADP reductase in C, thermoaceticum. NADPH is used in the synthesis of acetate from CO2 in this organism.  相似文献   

11.
The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.  相似文献   

12.
Analytically pure samples of the Romanowsky dyes eosin y, erythrosin b and tetrachlorofluorescein are prepared. DC of the dye samples shows no contaminations. We measured the absorption spectra of the dye dianions in alkaline aqueous solution and of the dye acids in 95% ethanol at very low dye concentrations. The molar extinction coefficients of the long wavelength absorption of the monomeric dye species are determined (Table 1). The extinction coefficients may be used for standardisation of dye samples. The absorption spectra of eosin y in aqueous solution are dependent on concentration. Using a new very sensitive method it was possible to identify two association equilibria from the concentration dependency of the spectra. Dimers are formed even in very dilute solutions, at higher concentrations tetramers. The dissociation constant of the dimers D in monomers M at 293 K, pH = 12, is K21 = 2,9 X 10(-5) M; of the tetramers Q in dimers D K42 = 2,4 X 10(-3) M. From the experimental spectra of eosin solutions at various concentrations, pH = 12, and the equilibrium constants K21, K42 the absorption spectra of the pure monomers, dimers and tetramers are calculated. M has one long wavelength absorption band, VM = 19300 cm-1, epsilon M = 1,03 X 10(5) M-1 cm-1; D also one absorption band, VD = 19300 cm-1, epsilon D = 1,74 X 10(5) M-1 cm-1; Q two absorption bands, VQ1 = 19100, VQ2 = 20200 cm-1, epsilon Q1 = 1,65 X 10(5), epsilon Q2 = 1,96 X 10(5) M-1 cm-1. The absorption spectrum of the dimers is discussed by quantum mechanics.  相似文献   

13.
1-[2-Amino-5-(6-carboxyindol-2-yl)phenoxyl]-2-(2'- amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (indo-1) and 2-[2-(bis(carboxymethyl)amino-5-methylphenoxy) methyl]-6- methyl-8-[bis-(carboxymethyl)amino]quinoline (quin-2) are sensitive, spectral indicators for Zn2+. Additions of subsaturating Zn2+ to 10-80 microM indo-1 or quin-2 at pH 7.0 produce uv difference spectra with isosbestic wavelengths at 342 and 282 nm or at 342, 317, and 252 nm, respectively. Formation of 1:1 Zn2+:indicator complexes at pH 7.0 and 20 degrees C in the absence (presence) of 100 mM KCl gives delta epsilon max = -2.4 +/- 0.2 X 10(4) M-1 cm-1 at 367 nm (-2.1 +/- 0.2 X 10(4) M-1 cm-1 at 365 nm) for indo-1 and delta epsilon max = -2.7 +/- 0.1 X 10(4) M-1 cm-1 at 266 nm (-2.6 +/- 0.1 X 10(4) M-1 cm-1 at 265 nm) for quin-2. Competition experiments at pH 7.0 and 20 degrees C with indo-1 and quin-2 and also 4-(2-pyridylazo)resorcinol (PAR) as the second chelator in the absence (presence) of 100 mM KCl yield apparent affinity constants: K'A = 2.5 +/- 1.0 X 10(10) M-1 (6.2 +/- 0.5 X 10(9) M-1) for indo-1 binding Zn2+ and K'A = 9.4 +/- 3.3 X 10(11) M-1 (2.7 +/- 0.1 X 10(11) M-1) for quin-2 binding Zn2+. The above constants provide the basis for rapid steady-state spectrophotometric determinations of the affinity of a protein for Zn2+ with K'A approximately 10(10) - 10(13) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

15.
1. Spectroscopic and functional properties of Japanese-lacquer-tree (Rhus vernicifera) laccase were re-investigated, with special emphasis on the relationships between the different types of copper centres (Types 1, 2, and 3). 2. On removal of the Type 2 Cu(II), a decrease of absorbance occurred in the wavelength region above 650 nm (delta epsilon 750 = 300 M-1 . cm-1) and around 330 nm (delta episom 330 up to 2200 M-1 . cm-1). 3. Reductive titrations with ascorbic acid or ferrocyanide showed that the electron-accepting capacity of the partial apoprotein is one electron-equivalent lower than that of the native protein, i.e. the protein two-electron acceptor is present in the oxidized state in spite of absorbance loss at 330 nm. 4. The 330 nm chromophore apparently depends on the presence of both the Type 2 and the Type 3 copper in the oxidized state. 5. This finding may have implications in the relative location of Type 2 and 3 copper centres and on the redox behaviour of laccase.  相似文献   

16.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A technique is proposed for determining lysinamidase and aminolactamase activities of lysinamidase (EC 3.5.1.n.). It is based on spectrophotometric measurement of the optical density decrease of the substrate solution at 227 nm. For cyclic lysinamide L-alpha-amino-epsilon-caprolactam epsilon 227 M = 151 M-1.cm-1, for linear lysinamide epsilon 227 M = 73 M-1.cm-1, and for lysine epsilon 227 M = 5 M-1.cm-1. The technique is simple and requires no additional reagents.  相似文献   

18.
The reactions of Fe(II)EDTA, Fe(II)DTPA, and Fe(II)HEDTA with hydrogen peroxide near neutral pH have been investigated. All these reactions have been assumed to proceed through an active intermediate, I1, (Formula: see text) where pac is one of the three polyaminocarboxylates mentioned above. I1, whether .OH radical or an iron complex, reacts with ethanol, formate, and other scavengers at rates relative to k2 that, with the exception of t-butanol and benzoate, are similar, but not identical, to those expected for the.OH radical. In contrast, at pH 3, in the absence of ligands the reaction of I1 with Fe2+ was inhibited by ethanol and t-butanol and the reactivity of I1 towards these two scavengers relative to ferrous ion is identical to that exhibited by the hydroxyl radical. When pac = HEDTA, the intermediate of the first reaction reacts with formate ion to form the ferrous HEDTA ligand radical complex, which is characterized by absorption maxima at 295 nm (epsilon = 2,640 M-1 cm-1) and 420 nm (epsilon = 620 M-1 cm-1). For the reaction of Fe(II)HEDTA with H2O2, the following mechanism is proposed: (Formula: see text) where k17 = 4.2 X 10(4) M-1 sec-1 and k19 = 5 +/- 0.2 sec-1.  相似文献   

19.
The reaction of N3- with Co,Zn superoxide dismutase, a good analogue of the native Cu,Zn enzyme, was studied in the presence and absence of phosphate, which is known to perturb the spectroscopic properties of the cobalt chromophore in the Co,Zn enzyme. EPR, NMR, and optical titrations demonstrated the formation of different adducts for N3- depending on the presence of phosphate, at variance with results previously obtained with CN- [3]. This evidence indicates that the mechanism of anion binding to Cu,Zn superoxide dismutase cannot be described on the basis of data obtained with a single type of anions.  相似文献   

20.
C Rüegg  K Lerch 《Biochemistry》1981,20(5):1256-1262
The antiferromagnetically spin-coupled copper(II) pair in Neurospora tyrosinase was substituted by cobalt, yielding a stoichiometry of 2 mol of Co/mol of protein. The low magnitude of the high-spin Co(II) EPR signal indicates spin coupling of the two Co(II) ions similar to that observed in the native enzyme. The absorption spectrum with four transitions in the visible region of intermediate intensity (epsilon 607(670), epsilon 564(630), epsilon 526(465)), a shoulder at 635 nm, and the near-infrared bands at 1180 (epsilon 30) and 960 nm (epsilon 15) indicate tetrahedral coordination around the Co(II) center. The cobalt(II) tyrosinase is enzymatically inactive, and there is no evidence that it binds molecular oxygen. Upon addition of cyanide or the competitive tyrosinase inhibitors L-mimosine, benzoic acid, or benzhydroxamic acid te absorption spectrum changes in a characteristic manner. This optical perturbation shows that binding of these inhibitors (and presumably of the substrates) occurs at or near the metal site. One Co(II) ion can be removed preferentially by incubation with KCN at high pH, indicating the two ions not to be in an identical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号