首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports from this laboratory indicate that exposure of cholesterol-loaded macrophages to high density lipoprotein 3 (HDL3) stimulates not only cholesterol efflux, but also results in a two- to threefold increase in apoE accumulation in the media (Dory, L., 1989. J. Lipid Res. 30: 809-816). The present experiments demonstrate that the effect of HDL3, and to a lesser extent HDL2, on apoE secretion is specific, concentration-dependent, and may require interaction with the HDL receptor. Very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) fail to specifically stimulate apoE secretion by cholesterol-loaded macrophages. The effect of HLD3 is maximal at 25-50 micrograms/ml (0.26-0.52 microM) and can be totally abolished by mild nitrosylation (with 3 mM tetranitromethane (TNM)). Data are also presented to indicate that the increased rate of apoE secretion in the presence of HDL3 is not due to a "protective" effect of this lipoprotein on possible proteolytic degradation or cellular reuptake of apoE secreted into the media. The stimulatory effect of HDL on apoE secretion can be clearly dissociated from cholesterol efflux; HDL stimulates apoE secretion from oxysterol-treated cells in the absence of measurable cholesterol efflux, while TNM-HDL promotes substantial cholesterol efflux from cholesterol-loaded cells but has no effect on apoE secretion. The kinetics of apoE synthesis and secretion, determined in short-term labeling studies, demonstrate that under all experimental conditions examined a substantial portion of cellular apoE is not secreted. Furthermore, in cholesterol-loaded cells HDL3 increases apoE secretion essentially by diversion of a greater portion of cellular apoE pool for secretion. While HDL3 has no effect on the rate of apoE synthesis, cellular apoE turns over two-fold faster in cells incubated in the presence of HDL3 than in its absence (t 1/2 = 11 +/- 2 and 22 +/- 4 min, respectively), an observation corresponding well with the changes in the rates of apoE secretion under similar conditions. The HDL3-mediated increase in apoE secretion by cholesterol-loaded macrophages suggests another mechanism by which HDL exerts a protective effect in the development of atherosclerosis; increased contribution to the metabolic pool of apoE by peripheral tissues may lead to a more effective clearance of peripheral cholesterol by the liver (reverse cholesterol transport).  相似文献   

2.
The effect of inhibition of acylCoA: cholesterol acyltransferase (ACAT) was studied on high density lipoprotein (HDL) metabolism. An inhibitor of ACAT, MCC-147, was given mouse peritoneal macrophages and expression of ATP-binding cassette transporter A1 (ABCA1) was examined. ABCA1 was increased both at the mRNA and protein levels, only when the cells are cholesterol-loaded and thereby the inhibitor decreased esterified cholesterol and increased unesterified cholesterol. In this condition, the ACAT inhibitor increased reversible binding of apoA-I to the cells and enhanced apoA-I-mediated release of cellular cholesterol and phospholipid, but did not influence nonspecific cellular cholesterol efflux to lipid microemulsion. It was therefore concluded that the ACAT inhibitor increased the release of cholesterol from the cholesterol-loaded macrophages by increasing the expression of ABCA1, putatively through shifting cholesterol distribution from the esterified to the free compartments.  相似文献   

3.
Previous studies in nonhuman primates revealed a striking positive correlation between liver cholesteryl ester (CE) secretion rate and the development of coronary artery atherosclerosis. CE incorporated into hepatic VLDL is necessarily synthesized by ACAT2, the cholesterol-esterifying enzyme in hepatocytes. We tested the hypothesis that the level of ACAT2 expression, in concert with cellular cholesterol availability, affects the CE content of apolipoprotein B (apoB)-containing lipoproteins. In a model system of lipoprotein secretion using COS cells cotransfected with microsomal triglyceride transfer protein and truncated forms of apoB, ACAT2 expression resulted in a 3-fold increase in microsomal ACAT activity and a 4-fold increase in the radiolabeled CE content of apoB-lipoproteins. After cholesterol-cyclodextrin (Chol-CD) treatment, CE secretion was increased by 27-fold in ACAT2-transfected cells but by only 7-fold in control cells. Chol-CD treatment also caused the percentage of CE in the apoB-lipoproteins to increase from 3% to 33% in control cells and from 16% to 54% in ACAT2-transfected cells. In addition, ACAT2-transfected cells secreted 3-fold more apoB than control cells. These results indicate that under all conditions of cellular cholesterol availability tested, the relative level of ACAT2 expression affects the CE content and, hence, the potential atherogenicity, of nascent apoB-containing lipoproteins.  相似文献   

4.
5.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

6.
The levels of plasma apolipoprotein (apo) E, an anti-atherogenic protein involved in mammalian cholesterol transport, were found to be 2-3 fold lower in mice over-expressing human apoA-I gene. ApoE is mainly associated with VLDL and HDL-size particles, but in mice the majority of the apoE is associated with the HDL particles. Over-expression of the human apoA-I in mice increases the levels of human apoA-I-rich HDL particles by displacing mouse apoA-I from HDL. This results in lowering of plasma levels of mouse apoA-I. Since plasma levels of apoE also decreased in the apoA-I transgenic mice, the mechanism of apoE lowering was investigated. Although plasma levels of apoE decreased by 2-3 fold, apoB levels remained unchanged. As expected, the plasma levels of human apoA-I were almost 5-fold higher in the apoAI-Tg mice compared to mouse apoA-I in WT mice. If the over-expression of human apoA-I caused displacement of apoE from the HDL, the levels of hepatic apoE mRNA should remain the same in WT and the apoAI-Tg mice. However, the measurements of apoE mRNA in the liver showed 3-fold decreases of apoE mRNA in apoAI-Tg mice as compared to WT mice, suggesting that the decreased apoE mRNA expression, but not the displacement of the apoE from HDL, resulted in the lowering of plasma apoE in apoAI-Tg mice. As expected, the levels of hepatic apoA-I mRNA (transgene) were 5-fold higher in the apoAI-Tg mice. ApoE synthesis measured in hepatocytes also showed lower synthesis of apoE in the apoAI-Tg mice. These studies suggest that the integration of human apoA-I transgene in mouse genome occurred at a site that affected apoE gene expression. Identification of this locus may provide further understanding of the apoE gene expression.  相似文献   

7.
Macrophages synthesize and secrete apolipoprotein E (apoE) constitutively. This process is upregulated under conditions of cholesterol loading. The response to cholesterol is antiatherogenic as it is believed to promote cholesterol efflux from the artery wall. The concentration of lactosyl ceramide (LacCer), a glycosphingolipid recently discovered to regulate cellular signaling, proliferation, and expression of adhesion molecules, is also increased in atherosclerotic tissues. Here we have investigated the effect of exogenous LacCer on macrophage apoE levels. We show that increasing macrophage LacCer levels sevenfold led to reductions in cellular and secreted apoE (15 and 30%, respectively, over a 24-h period) as determined by enzyme-linked immunosorbent assay. A similar effect was also induced by glucosyl ceramide (GlcCer) but not by ganglioside species. When macrophages were converted to cholesterol-loaded foam cells by incubation with acetylated LDL, the resulting increase in cellular apoE levels was inhibited by 26% when the cells were subsequently enriched with LacCer. After metabolic labeling of cellular glycosphingolipids with [14C]palmitate, we also discovered that high-density lipoprotein (HDL) stimulates the efflux of glycosphingolipids from foam cells. These data imply that LacCer and GlcCer may be proatherogenic due to the suppression of macrophage apoE production. Furthermore, the efflux of glycosphingolipids from macrophage foam cells to HDL could indicate a potential pathway for their removal from the artery wall and subsequent delivery to the liver.  相似文献   

8.
ApoE is expressed in multiple mammalian cell types in which it supports cellular differentiated function. In this report we demonstrate that apoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity. Systemic treatment with pioglitazone increased systemic insulin sensitivity and increased apoE mRNA levels in adipose tissue by 2-3-fold. Treatment of cultured 3T3-L1 adipocytes with ciglitazone increased apoE mRNA levels by 2-4-fold in a dose-dependent manner and increased apoE secretion from cells. Conversely, treatment of adipocytes with tumor necrosis factor (TNF) alpha reduced apoE mRNA levels and apoE secretion by 60%. Neither insulin nor a peroxisome proliferator-activated receptor (PPAR) alpha agonist regulated adipocyte apoE gene expression. In addition, treatment of human monocyte-derived macrophages with ciglitazone did not regulate expression of apoE. Additional analyses using reporter genes indicated that the effect of TNFalpha and PPARgamma agonists on the apoE gene was mediated via distinct gene control elements. The TNFalpha effect was mediated by elements within the proximal promoter, whereas the PPARgamma effect was mediated by elements within a downstream enhancer. However, the addition of TNFalpha substantially reduced the absolute levels of apoE reporter gene response even in the presence of ciglitazone. These results indicate for the first time that adipose tissue expression of apoE is modulated by physiologic regulators of insulin sensitivity.  相似文献   

9.
Molecular interactions between apoE and ABCA1: impact on apoE lipidation   总被引:3,自引:0,他引:3  
Apolipoprotein E (apoE)/ABCA1 interactions were investigated in human intact fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Here, we show that purified human plasma apoE3 forms a complex with ABCA1 in normal fibroblasts. Lipid-free apoE3 inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than reconstituted HDL particles (IC(50) = 2.5 +/- 0.4 microg/ml vs. 12.3 +/- 1.3 microg/ml). ApoE isoforms showed similar binding for ABCA1 and exhibited identical kinetics in their abilities to induce ABCA1-dependent cholesterol efflux. Mutation of ABCA1 associated with Tangier disease (C1477R) abolished both apoE3 binding and apoE3-mediated cholesterol efflux. Analysis of apoE3-containing particles generated during the incubation of lipid-free apoE3 with stimulated normal cells showed nascent apoE3/cholesterol/phospholipid complexes that exhibited prebeta-electrophoretic mobility with a particle size ranging from 9 to 15 nm, whereas lipid-free apoE3 incubated with ABCA1 mutant (C1477R) cells was unable to form such particles. These results demonstrate that 1). apoE association with lipids reduced its ability to interact with ABCA1; 2). apoE isoforms did not affect apoE binding to ABCA1; 3). apoE-mediated ABCA1-dependent cholesterol efflux was not affected by apoE isoforms in fibroblasts; and 4). the lipid translocase activity of ABCA1 generates apoE-containing high density-sized lipoprotein particles. Thus, ABCA1 is essential for the biogenesis of high density-sized lipoprotein containing only apoE particles in vivo.  相似文献   

10.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

11.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

12.
Administration of phosphatidylinositol (PI) to New Zealand White rabbits increases HDL negative charge and stimulates reverse cholesterol transport. Intravenously administered PI (10 mg/kg) associated almost exclusively with the HDL fraction in rabbits. PI promoted an increase in the hepatic uptake of plasma free cholesterol (FC) and a 21-fold increase in the biliary secretion of plasma-derived cholesterol. PI also increased cholesterol excretion into the feces by 2.5-fold. PI directly affects cellular cholesterol metabolism. In cholesterol-loaded macrophages, PI stimulated cholesterol mass efflux to lipid-poor reconstituted HDL. PI was about half as effective as cAMP at stimulating efflux, and the effects of cAMP and PI were additive. In cultured HepG2 cells, PI-enriched HDL also enhanced FC uptake from HDL by 3-fold and decreased cellular cholesterol synthesis and esterification. PI enrichment had no effect on the selective uptake of cholesterol esters or on the internalization of HDL particles. PI-dependent metabolic events were efficiently blocked by inhibitors of protein kinase C and the inositol signaling cascade.The data suggest that HDL-PI acts via cell surface ATP binding cassette transporters and signaling pathways to regulate both cellular and intravascular cholesterol homeostasis.  相似文献   

13.
In these studies, we have utilized a J774 macrophage model in order to compare phospholipid and cholesterol efflux kinetics in macrophage cells that do not express endogenous apoE to cells transfected to express physiologic levels of human apoE. This model was also used to compare the effect of exogenously added versus endogenously expressed apoE on cholesterol efflux kinetics from macrophages. ApoE expression increased free cholesterol and phospholipid efflux into the medium, but did not change the free cholesterol/phospholipid molar ratio of secreted lipids. Kinetic examination showed that free cholesterol and phospholipid appeared simultaneously in the medium, and that cholesterol loading widened the difference in the rate of cholesterol efflux between apoE-expressing and non-expressing macrophages. Addition of exogenous lipid-free apoE added to non-expressing cells, at a >2-fold higher medium concentration than that produced by endogenous expression, produced less cholesterol efflux than that observed from apoE-expressing cells. The addition of phosphatidylcholine liposomes substantially increased cholesterol efflux from apoE-expressing and non-expressing J774 cells. Addition of these liposomes eliminated the enhanced cholesterol efflux produced by addition of exogenous apoE. On the other hand, even in the presence of phosphatidylcholine liposomes, cholesterol efflux rates remained significantly higher from apoE-expressing macrophages than non-expressing cells. Similar results were obtained when efflux was studied in the presence of cyclodextrin. These results suggest that endogenous expression of apoE by macrophages alters cell cholesterol balance via mechanisms distinct from those utilized by the extracellular addition of apoE, and may involve intracellular or pericellular mechanisms.  相似文献   

14.
15.
Astrocytes play a key role in cholesterol metabolism in central nervous system. We have shown that fetal rat astrocytes in primary culture secrete cholesterol-rich HDL with the endogenous apolipoprotein (apo) E and generate cholesterol-poor HDL with exogenous apoE and apoA-I [Ito et al. (1999) J. Neurochem. 72, 2362]. In order to study these reactions in relation to the stage of cell differentiation, we examined generation of HDL by rat astrocytoma cells. Lack of apoE secretion was found in three astrocytoma cell lines, human T98G, rat C6, and GA-1 [Kano-Tanaka et al. (1986) Proc. Jpn. Acad. Ser. B 62, 109]. GA-1 produced apoE at very low level and therefore generated much less HDL by itself than the astrocytes in primary culture. In contrast, GA-1 interacted with exogenous apoE and apoA-I to produce cholesterol-rich HDL while the astrocytes produced cholesterol-poor HDL with these apolipoproteins. Cholesterol biosynthesis rate measured from mevalonate was higher and down-regulated more by LDL in the astrocytes than GA-1. On the other hand, the cellular cholesterol level, uptake of LDL, and cyclodextrin-mediated non-specific diffusion of cholesterol from cell surface were same between these two cells. Treatment of GA-1 with acidic fibroblast growth factor influenced neither the production of apoE nor the baseline lipid secretion, but increased the cholesterol synthesis from mevalonate and the magnitude of its down-regulation by LDL, and decreased cholesterol content in the HDL produced by exogenous apoA-I. In conclusion, suppression of apoE biosynthesis in the undifferentiated astrocytes GA-1 resulted in poor secretion of cholesterol-rich HDL and in turn more production of HDL with exogenous apolipoprotein. Cellular cholesterol homeostasis was altered accordingly.  相似文献   

16.
Previous studies showed that apolipoprotein-E (apoE) mRNA is regulated in rat adrenal gland by treatments that alter adrenal gland cholesterol content and steroidogenesis. In the present study cell types expressing apoE mRNA were determined by in situ hybridizations using an [alpha-35S]UTP-labeled RNA probe. Autoradiographic grains were counted to compare apoE expression in adrenal glands from control and experimentally treated animals. In control adrenal gland, zona (z.) fasciculata and z. reticularis exhibited the highest level of apoE mRNA expression, with lower levels in z. glomerulosa and medulla. Dexamethasone (DEX) treatment selectively increased apoE mRNA 3-fold in outer z. fasciculata, but not in other adrenal zones. ApoE mRNA expression appeared to be lower in adrenal glands from 4-aminopyrazolopyrimidine-treated rats, in that differences among adrenal gland zones were abolished. DEX treatment increased adrenal gland cholesteryl ester and oil red O staining in z. fasciculata cells in which the apoE mRNA concentration was increased as well as in other cortical cells in which apoE mRNA was unchanged. Aminoglutethimide administration led to a large increase in oil red O staining throughout the cortex, including z. fasciculata, without affecting apoE mRNA expression. These data suggest that adrenal gland apoE mRNA expression is not closely coupled to cellular cholesterol concentrations. Increased apoE mRNA expression in z. fasciculata of DEX-treated animals suggests an inverse relationship between apoE mRNA concentration and the level of steroidogenesis. This result is consistent with the proposal that apoE may play a role in regulating the utilization of cholesterol for steroid production.  相似文献   

17.
Wang WQ  Moses AS  Francis GA 《Biochemistry》2001,40(12):3666-3673
Despite very low plasma levels of HDL, carriers of the apolipoprotein AI Arg173 --> Cys mutation apoAI(Milano) (AIM) have no apparent increase in risk for atherosclerotic vascular disease. HDL apolipoprotein species in AIM carriers include apoAI-AII heterodimers, previously found to confer the enhanced ability of tyrosyl radical-oxidized HDL to mobilize cholesterol for removal from cultured cells. To determine whether enhanced mobilization of cholesterol by apoprotein species in AIM explains a cardioprotective action of this mutation, we examined the ability of lipid-free and lipid-bound AIM and AIM-AII heterodimers to deplete cholesterol from cultured cells. Free AIM and AIM-AII heterodimers showed a decreased capacity to act as acceptors of cholesterol from cholesterol-loaded human fibroblasts compared with native apoAI but similar capacities to deplete fibroblasts of the pool of cholesterol available for esterification by acyl-CoA:cholesterol acyltransferase (ACAT). Discoidal reconstituted HDL (rHDL) containing apoAI depleted both of these cholesterol pools more readily than AIM-containing rHDL when compared at equivalent rHDL protein levels, but similar abilities of these rHDL to deplete cell cholesterol were seen when compared at equivalent phospholipid levels. Spherical rHDL generated using the whole lipid fraction of HDL and apoAI or AIM showed similar capacities to deplete total and ACAT-accessible cell cholesterol when compared at similar protein levels, but an increased capacity of AIM-containing particles was seen when compared at equivalent phospholipid levels. Unlike the apoAI-AII heterodimer in tyrosylated HDL, AIM-AII heterodimer-containing spherical rHDL showed no increased capacity to deplete either of these pools of cholesterol. These results suggest a similar or better capacity of native apoAI in lipid-free or lipid-bound form in discoidal rHDL to enhance the mobilization of cellular cholesterol when compared to AIM in its free or lipid-bound forms. Any increase in depletion of cellular cholesterol by lipid-bound AIM in spherical rHDL appears related to altered phospholipid-binding rather than intrinsic cholesterol-mobilizing characteristics of this protein compared to native apoAI. The lack of major differences in these studies in cholesterol mobilization by native apoAI and AIM, or by apoAIM-AII heterodimers, suggests that any protection against atherosclerosis conferred by this mutation is likely related to other beneficial vascular effects of AIM.  相似文献   

18.
Human monocyte-derived macrophages (MDM) are cholesterol-loaded, and the rates of uptake, degradation and resecretion of high-density lipoproteins are measured and compared to the rates in control cells. Results show the binding activity of these lipoproteins is upregulated in cholesterol-loaded cells; the bound and internalized lipoproteins are not degraded to any appreciable extent but primarily resecreted as a larger particle. The enhancement of binding activity for high-density lipoproteins is arrested when cycloheximide is added to the medium, suggesting that protein synthesis is involved. Preliminary evidence also indicates that HDL3 (without apoE) after internalisation is converted intracellularly to a larger apoE-containing HDL2-like particles. Thus, MDM appears to possess specific receptors for HDL3 without apoE that may function to facilitate HDL-mediated removal of excess cholesterol from cells.  相似文献   

19.
Human apoE is a multifunctional and polymorphic protein synthesized and secreted by liver, brain, and tissue macrophages. Here we show that apoE isoforms and mutants expressed through lentiviral transduction display cell-specific differences in secretion efficiency. Whereas apoE3, apoE4, and a natural mutant of apoE4 (apoE-Cys(142)) were efficiently secreted from macrophages, apoE2 and a non-natural apoE mutant (apoE-Cys(112)/Cys(142)) were retained in the perinuclear region and only minimally secreted. The secretory block for apoE2 in macrophages was not affected by the ablation of LDLR (low density lipoprotein receptor), ABCA-1, or SR-BI (scavenger receptor class B type I) but was released in the absence of low density lipoprotein receptor related protein (LRP). In co-immunoprecipitation experiments, an anti-apoE antibody pulled down two times more LRP in apoE2-transduced macrophages than in apoE3-expressing macrophages. Non-reducing SDS-PAGE/Western blot analyses showed that macrophage apoE2 is mostly dimeric and multimeric, whereas apoE3 is predominantly monomeric. ApoE2 retention and multimer formation also occurred in human macrophages derived from the monocyte cell line THP-1. These results were specific for macrophages, as in transduced mouse primary hepatocytes: 1) ApoE2 was secreted as efficiently as apoE3 and apoE4; 2) all isoforms were exclusively in monomeric form; 3) there was no co-immunoprecipitation of apoE and LRP. A microsomal triglyceride transfer protein (MTP) inhibitor nearly deleted apoB100 secretion from hepatocytes without affecting apoE secretion. These data show that macrophages retain apoE2, a highly expressed protein carried by about 8% of the human population. Given the role of locally produced apoE in regulating cholesterol efflux, modulating inflammation, and controlling oxidative stress, this unique property of apoE2 may have important impacts on atherogenesis.  相似文献   

20.
We have previously shown that in Hep G2 cells and human hepatocytes, as compared with fibroblasts, the low-density lipoprotein (LDL) receptor activity is only weakly down-regulated after incubation of the cells with LDL, whereas incubation with high-density lipoproteins (HDL) of density 1.16-1.20 g/ml (heavy HDL) strongly increased the LDL-receptor activity. To elucidate this difference between hepatocytes and fibroblasts, we studied the cellular cholesterol homoeostasis in relation to the LDL-receptor activity in Hep G2 cells. (1) Interrupting the cholesteryl ester cycle by inhibiting acyl-CoA: cholesterol acyltransferase (ACAT) activity with compound 58-035 (Sandoz) resulted in an enhanced LDL-mediated down-regulation of the receptor activity. (2) The stimulation of the receptor activity by incubation of the cells with cholesterol acceptors such as heavy HDL was not affected by ACAT inhibition. (3) Incubation of the Hep G2 cells with LDL, heavy HDL or a combination of both grossly affected LDL-receptor activity, but did not significantly change the intracellular content of free cholesterol, suggesting that in Hep G2 cells the regulatory free cholesterol pool is small as compared with the total free cholesterol mass. (4) We used changes in ACAT activity as a sensitive (indirect) measure for changes in the regulatory free cholesterol pool. (5) Incubation of the cells with compactin (2 microM) without lipoproteins resulted in a 4-fold decrease in ACAT activity, indicating that endogenously synthesized cholesterol is directed to the ACAT-substrate pool. (6) Incubation of the cells with LDL or a combination of LDL and heavy HDL stimulated ACAT activity 3-5 fold, whereas incubation with heavy HDL alone decreased ACAT activity more than 20-fold. Our results suggest that in Hep G2 cells exogenously delivered (LDL)-cholesterol and endogenously synthesized cholesterol are primarily directed to the cholesteryl ester (ACAT-substrate) pool or, if present, to extracellular cholesterol acceptors (heavy HDL) rather than to the free cholesterol pool involved in LDL-receptor regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号