首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dithiol protein tryparedoxin is a component of the unique trypanothione/trypanothione reductase metabolism of trypanosomatids and is involved in the parasite synthesis of deoxyribonucleotides and the detoxication of hydroperoxides. Tryparedoxin is a highly abundant protein in all life stages of Trypanosoma brucei, the causative agent of African sleeping sickness. As shown here, its functional properties are intermediate between those of classical thioredoxins and glutaredoxins. The redox potential of T. brucei tryparedoxin of -249 mV was determined by protein-protein redox equilibration with Escherichia coli thioredoxin. The trypanothione/tryparedoxin couple is probably the most significant factor determining the cytosolic redox potential of the parasites. The pK value of Cys(40), the first thiol in the WCPPC motif, is 7.2 as derived from the thiolate absorption at 240 nm and the rate of carboxymethylation. Alteration of the active site into that of thioredoxin (CGPC) did not affect the pK value. In contrast, in the mutant with the glutaredoxin motif (CPYC) the pK dropped to < or =4.0. The fact that the pK value of tryparedoxin coincides with the intracellular pH of the parasite may contribute to the reactivity of tryparedoxin in thiol disulfide exchange reactions.  相似文献   

2.
Thiol-dependent hydroperoxide metabolism in parasites is reviewed in respect to potential therapeutic strategies. The hydroperoxide metabolism of Crithidia fasciculata has been characterized to comprise a cascade of three enzymes, trypanothione reductase, tryparedoxin, and tryparedoxin peroxidase, plus two supportive enzymes to synthesize the redox mediator trypanothione from glutathione and spermidine. The essentiality of the system in respect to parasite vitality and virulence has been verified by genetic approaches. The system appears to be common to all genera of the Kinetoplastida. The terminal peroxidase of the system belongs to the protein family of peroxiredoxins which is also represented in Entamoeba and a variety of metazoan parasites. Plasmodial hydroperoxide metabolism displays similarities to the mammalian system in comprising glutathione biosynthesis, glutathione reductase, and at least one glutathione peroxidase homolog having the active site selenocysteine replaced by cysteine. Nothing precise is known about the antioxidant defence systems of Giardia, Toxoplasma, and Trichomonas species. Also, the role of ovothiols and mycothiols reportedly present in several parasites remains to be established. Scrutinizing known enzymes of parasitic antioxidant defence for suitability as drug targets leaves only those of the trypanosomatid system as directly or indirectly validated. By generally accepted criteria of target selection and feasibility considerations tryparedoxin and tryparedoxin peroxidase can at present be rated as the most appealing target structures for the development of antiparasitic drugs.  相似文献   

3.
Tryparedoxin peroxidase (TryP) is a recently discovered 2Cys-peroxiredoxin involved in defence against oxidative stress in parasitic trypanosomatids. The crystal structure of recombinant Crithidia fasciculata TryP, in the reduced state, has been determined using multi-wavelength anomalous dispersion methods applied to a selenomethionyl derivative. The model comprises a decamer with 52 symmetry, ten chloride ions with 23 water molecules and has been refined, using data to 3.2 A resolution (1 A=0.1 nm), to an R-factor and R(free) of 27.3 and 28.6 %, respectively. Secondary structure topology places TryP along with tryparedoxin and glutathione peroxidase in a distinct subgroup of the thioredoxin super-family. The molecular details at the active site support ideas about the enzyme mechanism and comparisons with an oxidised 2Cys-peroxiredoxin reveal structural alterations induced by the change in oxidation state. These include a difference in quaternary structure from dimer (oxidised form) to decamer (reduced form). The 2Cys-peroxiredoxin assembly may prevent indiscriminate oligomerisation, localise ten peroxidase active sites and contribute to both the specificity of reduction by the redox partner tryparedoxin and attraction of peroxides into the active site.  相似文献   

4.
In Kinetoplastida, comprising the medically important parasites Trypanosoma brucei, T. cruzi, and Leishmania species, 2-Cys peroxiredoxins described to date have been shown to catalyze reduction of peroxides by the specific thiol trypanothione using tryparedoxin, a thioredoxin-related protein, as an immediate electron donor. Here we show that a mitochondrial peroxiredoxin from L. infantum (LimTXNPx) is also a tryparedoxin peroxidase. In an heterologous system constituted by nicotinamide adenine dinucleotide phosphate (NADPH), T. cruzi trypanothione reductase, trypanothione and Crithidia fasciculata tryparedoxin (CfTXN1 and CfTXN2), the recombinant enzyme purified from Escherichia coli as an N-terminally His-tagged protein preferentially reduces H(2)O(2) and tert-butyl hydroperoxide and less actively cumene hydroperoxide. Linoleic acid hydroperoxide and phosphatidyl choline hydroperoxide are poor substrates in the sense that they are reduced weakly and inhibit the enzyme in a concentration- and time-dependent way. Kinetic parameters deduced for LimTXNPx are a k(cat) of 37.0 s(-1) and K(m) values of 31.9 and 9.1 microM for CfTXN2 and tert-butyl hydroperoxide, respectively. Kinetic analysis indicates that LimTXNPx does not follow the classic ping-pong mechanism described for other TXNPx (Phi(1,2) = 0.8 s x microM(2)). Although the molecular mechanism underlying this finding is unknown, we propose that cooperativity between the redox centers of subunits may explain the unusual kinetic behavior observed. This hypothesis is corroborated by high-resolution electron microscopy and gel chromatography that reveal the native enzyme to preferentially exist as a homodecameric ring structure composed of five dimers.  相似文献   

5.
Hydroperoxide metabolism in Crithidia fasciculata has recently been shown to be catalyzed by a cascade of three oxidoreductases comprising trypanothione reductase (TR), tryparedoxin (TXN1), and tryparedoxin peroxidase (TXNPx) (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). The existence of this metabolic system in the human pathogen Trypanosoma cruzi is supported here by immunohistochemistry. Epimastigotes of T. cruzi display strong immunoreactivity with antibodies raised against TXN1 and TXNPx of C. fasciculata. In addition, a full-length open reading frame presumed to encode a peroxiredoxin-type protein in T. cruzi (Acc. Nr. AJ 012101) was heterologously expressed in Escherichia coli and shown to exhibit tryparedoxin peroxidase activity. With TXN, TXNPx, trypanothione and TR, T. cruzi possesses all components constituting the crithidial peroxidase system. It is concluded that the antioxidant defense of T. cruzi also depends on the NADPH-fuelled, trypanothione-mediated enzymatic hydroperoxide metabolism.  相似文献   

6.
Kinetoplast DNA (kDNA) is the mitochondrial DNA of trypanosomatids. Its major components are several thousand topologically interlocked DNA minicircles. Their replication origins are recognized by universal minicircle sequence-binding protein (UMSBP), a CCHC-type zinc finger protein, which has been implicated with minicircle replication initiation and kDNA segregation. Interactions of UMSBP with origin sequences in vitro have been found to be affected by the protein's redox state. Reduction of UMSBP activates its binding to the origin, whereas UMSBP oxidation impairs this activity. The role of redox in the regulation of UMSBP in vivo was studied here in synchronized cell cultures, monitoring both UMSBP origin binding activity and its redox state, throughout the trypanosomatid cell cycle. These studies indicated that UMSBP activity is regulated in vivo through the cell cycle dependent control of the protein's redox state. The hypothesis that UMSBP's redox state is controlled by an enzymatic mechanism, which mediates its direct reduction and oxidation, was challenged in a multienzyme reaction, reconstituted with pure enzymes of the trypanosomal major redox-regulating pathway. Coupling in vitro of this reaction with a UMSBP origin-binding reaction revealed the regulation of UMSBP activity through the opposing effects of tryparedoxin and tryparedoxin peroxidase. In the course of this reaction, tryparedoxin peroxidase directly oxidizes UMSBP, revealing a novel regulatory mechanism for the activation of an origin-binding protein, based on enzyme-mediated reversible modulation of the protein's redox state. This mode of regulation may represent a regulatory mechanism, functioning as an enzyme-mediated, redox-based biological switch.  相似文献   

7.
The amino acid analogue selenomethionine (SeMet) is shown to be efficiently incorporated into recombinant proteins expressed in Escherichia coli grown in a simple minimal medium without the addition of synthetic amino acids. Furthermore, satisfactory SeMet incorporation is obtained with a methionine-prototrophic strain transformed with commonly used vector systems. As examples, purified tryparedoxin 1 from Crithidia fasciculata, alkylhydroperoxide reductase (AhpC) from Mycobacterium marinum and the 16-kDa antigen from M. tuberculosis are shown to be efficiently labelled with SeMet, using the culture conditions and the host/vector systems described here. Enzymatic analysis reveals no differences between native and SeMet-labelled tryparedoxin 1 enzyme. Both proteins yield crystals under similar conditions. The culture conditions and host vector systems described greatly facilitate selenium-labelling of proteins for 3-D structure determination.  相似文献   

8.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

9.
Trypanosoma brucei, the causative agent of African sleeping sickness, has three nearly identical genes encoding cysteine homologues of classical selenocysteine-containing glutathione peroxidases. The proteins are expressed in the mammalian and insect stages of the parasite. One of the genes, which contains a mitochondrial as well as a glycosomal targeting signal has been overexpressed. The recombinant T. brucei peroxidase has a high preference for the trypanothione/tryparedoxin couple as electron donor for the reduction of different hydroperoxides but accepts also T. brucei thioredoxin. The apparent rate constants k(2)' for the regeneration of the reduced enzyme are 2 x 10(5) m(-1) s(-1) with tryparedoxin and 5 x 10(3) m(-1) s(-1) with thioredoxin. No saturation kinetics was observed and the rate-limiting step of the overall reaction is reduction of the hydroperoxide. With glutathione, the peroxidase has marginal activity and reduction of the enzymes becomes limiting with a k(2)' value of 3 m (-1) s(-1). The T. brucei peroxidase, in contrast to the related Trypanosoma cruzi enzyme, also accepts hydrogen peroxide as substrate. The catalytic efficiency of the peroxidase studied here is comparable with that of the peroxiredoxin-like tryparedoxin peroxidases, which shows that trypanosomes possess two distinct peroxidase systems both dependent on the unique dithiol trypanothione.  相似文献   

10.
König J  Fairlamb AH 《The FEBS journal》2007,274(21):5643-5658
The genome of Leishmania major, the causative agent of cutaneous leishmaniasis, contains three almost identical genes encoding putative glutathione peroxidases, which differ only at their N- and C-termini. Because the gene homologues are essential in trypanosomes, they may also represent potential drug targets in Leishmania. Recombinant protein for the shortest of these showed negligible peroxidase activity with glutathione as the electron donor indicating that it is not a bone fide glutathione peroxidase. By contrast, high peroxidase activity was obtained with tryparedoxin, indicating that these proteins belong to a new class of monomeric tryparedoxin-dependent peroxidases (TDPX) distinct from the classical decameric 2-Cys peroxiredoxins (TryP). Mass spectrometry studies revealed that oxidation of TDPX1 with peroxides results in the formation of an intramolecular disulfide bridge between Cys35 and Cys83. Site-directed mutagenesis and kinetic studies showed that Cys35 is essential for peroxidase activity, whereas Cys83 is essential for reduction by tryparedoxin. Detailed kinetic studies comparing TDPX1 and TryP1 showed that both enzymes obey saturation ping-pong kinetics with respect to tryparedoxin and peroxide. Both enzymes show high affinity for tryparedoxin and broad substrate specificity for hydroperoxides. TDPX1 shows higher affinity towards hydrogen peroxide and cumene hydroperoxide than towards t-butyl hydroperoxide, whereas no specific substrate preference could be detected for TryP1. TDPX1 exhibits rate constants up to 8 x 10(4) m(-1).s(-1), whereas TryP1 exhibits higher rate constants approximately 10(6) m(-1).s(-1). All three TDPX proteins together constitute approximately 0.05% of the L. major promastigote protein content, whereas the TryPs are approximately 40 times more abundant. Possible specific functions of TDPXs are discussed.  相似文献   

11.
During host cell infection, Trypanosoma cruzi parasites are exposed to reactive oxygen and nitrogen species. As part of their antioxidant defense systems, they express two tryparedoxin peroxidases (TXNPx), thiol-dependent peroxidases members of the peroxiredoxin family. In this work, we report a kinetic characterization of cytosolic (c-TXNPx) and mitochondrial (m-TXNPx) tryparedoxin peroxidases from T. cruzi. Both c-TXNPx and m-TXNPx rapidly reduced hydrogen peroxide (k = 3.0 × 107 and 6 × 106 M−1 s−1 at pH 7.4 and 25 °C, respectively) and peroxynitrite (k = 1.0 × 106 and k = 1.8 × 107 M−1 s−1 at pH 7.4 and 25 °C, respectively). The reductive part of the catalytic cycle was also studied, and the rate constant for the reduction of c-TXNPx by tryparedoxin I was 1.3 × 106 M−1 s−1. The catalytic role of two conserved cysteine residues in both TXNPxs was confirmed with the identification of Cys52 and Cys173 (in c-TXNPX) and Cys81 and Cys204 (in m-TXNPx) as the peroxidatic and resolving cysteines, respectively. Our results indicate that mitochondrial and cytosolic TXNPxs from T. cruzi are highly efficient peroxidases that reduce hydrogen peroxide and peroxynitrite, and contribute to the understanding of their role as virulence factors reported in vivo.  相似文献   

12.
The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.  相似文献   

13.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.  相似文献   

14.
Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites.  相似文献   

15.
Macrophage activation is one of the hallmarks observed in trypanosomiasis, and the parasites must cope with the resulting oxidative burden, which includes the production of peroxynitrite, an unusual peroxo-acid that acts as a strong oxidant and trypanocidal molecule. Cytosolic tryparedoxin peroxidase (cTXNPx) has been recently identified as essential for oxidative defense in trypanosomatids. This peroxiredoxin decomposes peroxides using tryparedoxin (TXN) as electron donor, which in turn is reduced by dihydrotrypanothione. In this work, we studied the kinetics of the reaction of peroxynitrite with the different thiol-containing components of the cytosolic tryparedoxin peroxidase system in T. brucei (Tb) and T. cruzi (Tc), namely trypanothione, TXN, and cTXNPx. We found that whereas peroxynitrite reacted with dihydrotrypanothione and TbTXN at moderate rates (7200 and 3500 m(-1) s(-1), respectively, at pH 7.4 and 37 degrees C) and within the range of typical thiols, the second order rate constants for the reaction of peroxynitrite with reduced TbcTXNPx and TccTXNPx were 9 x 10(5) and 7.2 x 10(5) m(-1) s(-1) at pH 7.4 and 37 degrees C, respectively. This reactivity was dependent on a highly reactive cTXNPx thiol group identified as cysteine 52. Competition experiments showed that TbcTXNPx inhibited other fast peroxynitrite-mediated processes, such as the oxidation of Mn(3+)-porphyrins. Moreover, steady-state kinetic studies indicate that peroxynitrite-dependent TbcTXNPx and TccTXNPx oxidation is readily reverted by TXN, supporting that these peroxiredoxins would be not only a preferential target for peroxynitrite reactivity but also be able to act catalytically in peroxynitrite decomposition in vivo.  相似文献   

16.
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.  相似文献   

17.
Trypanosoma brucei, the causative agent of African sleeping sickness, synthesizes deoxyribonucleotides via a classical eukaryotic class I ribonucleotide reductase. The unique thiol metabolism of trypanosomatids in which the nearly ubiquitous glutathione reductase is replaced by a trypanothione reductase prompted us to study the nature of thiols providing reducing equivalents for the parasite synthesis of DNA precursors. Here we show that the dithiol trypanothione (bis(glutathionyl)spermidine), in contrast to glutathione, is a direct reductant of T. brucei ribonucleotide reductase with a K(m) value of 2 mm. This is the first example of a natural low molecular mass thiol directly delivering reducing equivalents for ribonucleotide reduction. At submillimolar concentrations, the reaction is strongly accelerated by tryparedoxin, a 16-kDa parasite protein with a WCPPC active site motif. The K(m) value of T. brucei ribonucleotide reductase for T. brucei tryparedoxin is about 4 micrometer. The disulfide form of trypanothione is a powerful inhibitor of the tryparedoxin-mediated reaction that may represent a physiological regulation of deoxyribonucleotide synthesis by the redox state of the cell. The trypanothione/tryparedoxin system is a new system providing electrons for a class I ribonucleotide reductase, in addition to the well known thioredoxin and glutaredoxin systems described in other organisms.  相似文献   

18.
Tryparedoxin peroxidase has recently been identified as a constituent of the complex peroxidase system in the trypanosomatid Crithidia fasciculata [Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L (1997) Biol Chem 378: 827–836]. In trypanosomatids, hydroperoxides are reduced at the expense of NADPH by means of a cascade of three oxidoreductases: the flavoprotein trypanothione reductase, tryparedoxin and tryparedoxin peroxidase. Inhibitors of these enzymes are presumed to be trypanocidal drugs. Here, we present the heterologous expression of a putative tryparedoxin peroxidase gene of Trypanosoma cruzi (accession no AJ012101) as an N-terminally His-tagged protein (TcH6TXNPx). The product was purified with a high yield (8.75 mg from 1 l fermentation broth of A 600 2.1) from the cytosolic fraction of sonified Escherichia coli BL21(DE3)[pET22b(+)/TcH6TXNPx] by metal-chelating chromatography. TcH6TXNPx proved to be fully active when tested with heterologous tryparedoxins of C. fasciculata (His-tagged TXN1H6 and TXN2H6). TcH6TXNPx displayed ping-pong kinetics with a k cat of 1.7 s−1 and limiting K m values of 51.8 μM and 1.7 μM for t-butyl hydroperoxide and CfTXN2H6, respectively. Received: 3 September 1999 / Accepted: 1 November 1999  相似文献   

19.
Peroxiredoxins   总被引:7,自引:0,他引:7  
Present knowledge on peroxiredoxins is reviewed with special emphasis on catalytic principles, specificities and biological function. Peroxiredoxins are low efficiency peroxidases using thiols as reductants. They appear to be fairly promiscuous with respect to the hydroperoxide substrate; the specificities for the donor substrate vary considerably between the subfamilies, comprising GSH, thioredoxin, tryparedoxin and the analogous CXXC motifs in bacterial AhpF proteins. Peroxiredoxins are definitely responsible for antioxidant defense in bacteria (AhpC), yeast (thioredoxin peroxidase) and trypanosomatids (tryparedoxin peroxidase). They are considered to determine virulence of mycobacteria and trypanosomatids. In higher plants they are involved in balancing hydroperoxide production during photosynthesis. In higher animals peroxiredoxins appear to be involved in the redox-regulation of cellular signaling and differentiation, displaying in part opposite effects.  相似文献   

20.
Thioredoxins are a group of small redox-active proteins involved in cellular redox regulatory processes as well as antioxidant defense. Thioredoxin, glutaredoxin, and tryparedoxin are members of the thioredoxin superfamily and share structural and functional characteristics. In the malarial parasite, Plasmodium falciparum, a functional thioredoxin and glutathione system have been demonstrated and are considered to be attractive targets for antimalarial drug development. Here we describe the identification and characterization of a novel 22 kDa redox-active protein in P. falciparum. As demonstrated by in silico sequence analyses, the protein, named plasmoredoxin (Plrx), is highly conserved but found exclusively in malarial parasites. It is a member of the thioredoxin superfamily but clusters separately from other members in a phylogenetic tree. We amplified the gene from a gametocyte cDNA library and overexpressed it in E. coli. The purified gene product can be reduced by glutathione but much faster by dithiols like thioredoxin, glutaredoxin, trypanothione and tryparedoxin. Reduced Plrx is active in an insulin-reduction assay and reduces glutathione disulfide with a rate constant of 640 m-1.s-1 at pH 6.9 and 25 degrees C; glutathione-dependent reduction of H2O2 and hydroxyethyl disulfide by Plrx is negligible. Furthermore, plasmoredoxin provides electrons for ribonucleotide reductase, the enzyme catalyzing the first step of DNA synthesis. As demonstrated by Western blotting, the protein is present in blood-stage forms of malarial parasites. Based on these results, plasmoredoxin offers the opportunity to improve diagnostic tools based on PCR or immunological reactions. It may also represent a specific target for antimalarial drug development and is of phylogenetic interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号