首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

2.
Rapid calcium exchange for protons and potassium in cell walls of Chara   总被引:3,自引:2,他引:1  
Net fluxes of Ca2+, H+ and K+ were measured from intact Chara australis cells and from isolated cell walls, using ion-selective microelectrodes. In both systems, a stimulation in Ca2+ efflux (up to 100 nmol m?2 s?1, from an influx of ~40 nmol m?2 s?1) was detected as the H+ or K+ concentration was progressively increased in the bathing solution (pH 7.0 to 4.6 or K+ 0.2 to 10mol m?3, respectively). A Ca2+ influx of similar size occurred following the reverse changes. These fluxes decayed exponentially with a time constant of about 10 min. The threshold pH for Ca2+ efflux (pH 5.2) is similar to a reported pH threshold for acid-induced wall extensibility in a closely related characean species. Application of NH4+ to intact cells caused prolonged H+ efflux and also transient Ca2+ efflux. We attribute all these net Ca2+ fluxes to exchange in the wall with H+ or K+. A theoretical treatment of the cell wall ion exchanges, using the ‘weak acid Donnan Manning’ (WADM) model, is given and it agrees well with the data. The role of Ca2+ in the cell wall and the effect of Ca2+ exchanges on the measured fluxes of other ions, including bathing medium acidification by H+ efflux, are discussed.  相似文献   

3.
Ion contents in needles from Norway spruce trees [Picea abies (L.) Karst.] growing in Würzburg and in the SO2-polluted Erzgebirge mountains were analysed to quantify cations which accumulate together with sulphate. In Würzburg there was a positive correlation of potassium (0.680 ± 0.300 Eq Eq?1 SO4?2), magnesium (0.415 ± 0.111 Eq Eq?1 SO4?2) and zinc (0.059 ± 0.006 Eq Eq?1 SO42?). In the Erzgebirge, potassium was also the stoichiometrically most important cation (0–887 ± 0–180 Eq K+ Eq?1 SO42?). All other correlations examined were weak or statistically non-significant. At both sites the calcium content of spruce needles did not depend on the sulphate content. The lack of a role for Ca2+ in neutralizing sulphate is a consequence of the presence of free oxalic acid in needles. Soluble oxalic acid precipitates Ca2+, which thereby becomes unavailable as a counterion for SO42?. The activity coefficients of Ca2+ and oxalate2?, and the solubility product of Ca-oxalate, were determined from in vivo data. It is concluded that the chronic accumulation of atmospheric sulphate in spruce needle vacuoles depletes available potassium and thereby strongly interferes with spruce growth and canopy turnover. This leads to impaired spruce vitality, even at sites where acute SO2 disease symptoms are absent.  相似文献   

4.
Abstract The comparative Na+ tolerance of Chora buckellii cultured in freshwater (FW) or artificial Waldsea water (AWW, which contains about 110 mol m?3 each Na +, Mg2+, Cl? and SO2-4 was tested with respect to the external Na+ to Ca2+ ratio (Na: Ca). Fifty per cent of FW cells subjected to 70 mol m?3 NaCl, which raised Na:Ca from 10: 1 to 700: 1 and the external osmotic pressure from 0.024 to 0.402 MPa, died within 6 d. Death was associated with the loss of Na/K selectivity, H+ -pump activity and turgor. Restoration of Na:Ca to 10:1 in high Na+ medium with CaCl2 ensured 100% survival and maintained H+-pump activity and Na/K selectivity of FW cells. Turgor was regulated within 3 d with net uptake of Na +, K+ and Cl? in the vacuolc. Mg2+ was not as effective as Ca2+ in enhancing survival or maintaining H+ -pump activity and Na/K selectivity of FW cells in the presence of elevated Na+. However, turgor was regulated within 3 d by accumulation of Cl? and an unknown cation in the vacuole. All AWW cells subjected to an increase of 70 mol m ?3 NaCl, which raised Na: Ca from 16:1 to 25: 1 and the external osmotic pressure from 0.915 to 1.22 MPa, survived and maintained H + -pump activity. Turgor was regulated within 6d by accumulating Na +, K+ and Cl? in the vacuole. All AWW cells subjected to 70molm?3 NaCl in a medium in which Na:Ca was equal to 700:1 survived and maintained H + -pump activity, but showed loss of Na/K selectivity. Turgor was regulated with an unknown osmoticum(a) within 6 d.  相似文献   

5.
Movements of ions are considered to be governed by the electroneutrality rule. Therefore, a cation moving across the cell membrane into the cell either passively or actively should move together with its counterion, an anion, in equal amounts of charge or in exchange for another cation inside the cell. This means that the net influx of the cation in question should be affected by the permeability of its counterion and/or another cation inside the cell. To examine osmotic and ionic regulation in Chara cells, cell fragments of Chara having a lower osmotic pressure than normal (L-cell fragments) were prepared. The L-cell fragments were individually put into various dilute electrolyte solutions and their osmotic potentials were measured with a turgor balance. Concentrations of K+, Na+, Ca2+, Mg2+, Cl?, NO?3. and SO2?4. in the external electrolyte solutions in which L-cells had been incubated were also analysed by ion chromatography. The results showed that in 0.5 mM KCL + 0.1 mM CaCl2 solution, Chara L-cell fragments absorbed K+ and Cl? to maintain electroneutrality and then regained their osmotic potential very rapidly. When the anion was Cl, the cation absorbed at the highest rate was K+ On the other hand, when the cation was K, the anion absorbed at the highest rate was Cl, Other ions Ca2+, SO2?4 and NO?3 showed much less permeability than K+ and Cl ?for the Chara plasma membrane. The conclusion from these findings was that due to the constraint of electroneutral transport, the uptake rate of a salt into L-cells is limited by the permeability of the least permeable ion.  相似文献   

6.
Peatlands are important to global carbon (C) sequestration and surface water acid–base status, both of which are affected by peatland alkalinity and acidity cycling. Relationships among sulfate (SO4 2?), nitrate (NO3 ?), organic acids (OA?), base cations (i.e., Ca2+, Mg2+, K+, and Na+), proton (H+) acidity, and bicarbonate (HCO3 ?) alkalinity were investigated in an intermediate fen peatland in northern Ontario during 2004 (an average precipitation year) and 2005 (a dry summer). Potential evapotranspiration was higher and the water table, groundwater input from the uplands, and runoff were lower during 2005. Net inputs of base cations, HCO3 ?, SO4 2?, and OA?, and to a lesser degree NO3 ?, were lower during the drier year, mainly due to lower groundwater transfer to the fen. Fen porewater HCO3 ? concentration and net output were also lower in the drier year, whereas Ca2+, Mg2+, and SO4 2? concentrations and net output were higher. During the climatically average year, N immobilization, carbonic acid (H2CO3) dissociation, and OA dissociation were equally important H+-producing reactions. Peat cation exchange accounted for 50% of the H+ sink, while SO4 2? reduction and denitrification accounted for an additional 20 and 25% of the H+ sink, respectively. During the dry year, S oxidation accounted for 55% of the H+ net production, while that for H2CO3 dissociation was 70% lower than that during the climatically average year. Peat cation exchange consumed three times the acidity, and accounted for 92% of the H+ consumption during the dry year compared to the climatically average year. This was consistent with a three-fold higher net base cation export from the fen during the dry year. Based on the study results, a conceptual model was developed that describes the role of acidity formation and its implications to intermediate fen acidification.  相似文献   

7.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

8.
Daily Patterns under the Life Cycle of a Maize Crop   总被引:3,自引:0,他引:3  
Together with photosynthesis, transpiration and respiration, the daily uptake of NO3?, NH4+, H2PO4?, K+, Ca2+, Mg2+, SO42?, the root respiration, root volume increase and root excretions have been studied by daily measurements during the growth period of whole maize plants (Zea mays L. cv. INRA F7 × F2) raised until complete maturity on nutrient solution. The uptake patterns show a maximum absorption of NO3?, K+ and Ca2+ during the vegetative growth phase. The absorption of these ions declines during maturation while that of H2PO4? reaches a maximum. Root respiration and particularly the uptake of NO3? and K+ are well correlated with the rate of root growth. Root excretion is more notable in young plants than in the old. It represents less than 0.2% of the net assimilation of adult plants.  相似文献   

9.
《Plant Science Letters》1984,33(1):103-114
The effects of monovalent cations, inhibitors of metabolism dinitrophenol (DNP), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and KCN and temperature variations upon Ca2+ fluxes in intact roots of barley (Hordeum vulgare L. cv. Fergus and Herta) seedlings were investigated. 45Ca2+ influx was depressed in CaSO4-grown (low-salt) plants by the presence of NH4+, K+, or Na+ in the uptake medium. In contrast Ca2+ influx was slightly increased by Li+. In low-salt roots pretreated with KCN and in roots preloaded with K+ (high-K+ plants), the presence of K+ in the medium had no significant effect on Ca2+ influx, while in roots preloaded with Na+, the presence of K+ in the medium depressed Ca2+ influx. In absolute terms, Ca2+ influx was significantly greater in high-salt (both K+ or Na+ preloaded) than in low-salt roots.Patterns of 45Ca2+ efflux in the absence and in the presence of K+, NH4+, or Li+ in the external medium showed that these monovalent cations caused stimulation of 45Ca2+ efflux both from the cytoplasmic and vacuolar phases.It was noted that these modifications of Ca2+ fluxes by monovalent cations are transient and characteristic of a transitional stage of cation uptake by low-salt roots. We conclude that, together with stimulated active H+ efflux (another characteristic of this transitional stage), modifications of Ca2+ fluxes during monovalent cation uptake by low-salt roots is a response directed towards the maintenance of electrical neutrality.Determination of net fluxes revealed that the plants were close to Ca2+ flux equilibrium in the growth medium (0.5 mM CaSO4). Transfer of these plants to 0.5 mM CaSO4 + 0.25 mM K2SO4 caused a net release of CA2+ into the external medium.  相似文献   

10.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

11.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

12.
Week-old wheat seedlings absorbed at least 40% NO3 from NaNO3 when preloaded with K+ than when preloaded with Na+ or Ca2+. Cultures of Triticum vulgare L. cv. Arthur were grown for 5 days on 0.2 mm CaSO4, pretreated for 48 hours with either 1 mm CaSO4, K2SO4, or Na2SO4, and then transferred to 1 mm NaNO3. All solutions contained 0.2 mm CaSO4. Shoots of K+-preloaded plants accumulated three times more NO3 than shoots of the other two treatments. Initially, the K+-preloaded plants contained 10-fold more malate than either Na+- or Ca2+-preloaded seedlings. During the 48-hour treatment with NaNO3, malate in both roots and shoots of the K+-preloaded seedlings decreased. Seedlings preloaded with K+ reduced 25% more NO3 than those preloaded with either Na+ or Ca2+. These experiments indicate that K+ enhanced NO3 uptake and reduction even though the absorption of K+ and NO3 were separated in time. Xylem exudate of K+-pretreated plants contained roughly equivalent concentrations of K+ and NO3, but exudate from Na+ and Ca2+-pretreated plants contained two to four times more NO3 than K+. Therefore K+ is not an obligatory counterion for NO3 transport in xylem.  相似文献   

13.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

14.
《BBA》2022,1863(8):148908
Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43?, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin–pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔμH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.  相似文献   

15.
Calcium-salinity interactions affect ion transport in Chara corallina   总被引:1,自引:1,他引:0  
Detached internodes of Chara corallina survived in solutions containing 100 mol m?3 NaCl when the external concentration of Ca2+ was greater than 1 mol m?3. Na+ influx was roughly proportional to external Na+ up to 100 mol m?3 NaCl. Na+ influx involved two components: a Ca2+-insensitive influx which allowed the passage of Na+ independently of external Ca2+; and a Ca2+-inhibitable mechanism where Na+ influx was inversely proportional to external Ca2+. The Ca2+-inhibitable Na+ influx was similar to the Ca2+-inhibitable K+ influx. Mg2+ and Ba2+ were able to substitute for Ca2+ in partially inhibiting Na+ influx in the absence of external Ca2+. The effect of Ca2+ appears specific to Na+ and K+ influx since the effects of a Ca2+-free solution on the influx of some other cations, anions and neutral compounds is small. It is suggested that Na+ influx via the Ca2+-inhibitable mechanism represents Na+ leakage through K+ channels and that cell death at high salinity occurs due to a cytotoxic Na+ influx via this mechanism.  相似文献   

16.
Isolated porcine platelet α granules display a Mg2+-stimulated ATPase activity. The enzyme is membrane bound and several criteria suggest that it is intrinsic to the α granules, rather than arising from contamination with other structures. Characterization of the ATPase revealed an apparent Km for ATP of 198 μm. Other nucleotides are also hydrolyzed by the enzyme, though at a slower rate. The enzyme has an absolute requirement for divalent cations, and both Mg2+ (apparent Km 0.93 mm) and Ca2+ (apparent Km 0.95 mm) can activate it. Maximal hydrolysis rates are higher with Mg2+ than with Ca2+. Micromolar Ca2+ in the presence of maximally stimulating Mg2+ concentrations produces a small additional enhancement of activity. The Mg2+ ATPase has a broad activity maximum between pH 6.5 and 8.5, and an activation energy of 11.8 Kcal/mol. Several independent observations suggest that the ATPase could be involved in H+ translocation across the granule membrane: (a) the activity is stimulated upon disrupting membrane continuity by either hypotonic lysis or addition of nondenaturing detergents; (b) proton ionophores enhance the activity in intact but not in disrupted α granules; (c) permeating anions stimulate the ATPase more than slowly permeant or impermeant ones; (d) addition of NH3 (as either NH4Cl or (NH4)2SO4) activates enzyme activity; (e) silicotungstate and disulfonic stilbene derivatives, which are inhibitors of other H+-transporting ATPases, also inhibit the α-granule enzyme. These findings are compared with the reported properties of H+ pumps of other storage and secretory organelles.  相似文献   

17.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

18.
This report summarizes recent work in our laboratory aimed at understanding protein-mediated mitochondrial cation transport. We are studying three distinct cation cycles that contain porters catalyzing influx and efflux of cations between cytosol and mitochondrial matrix. Each of these cation cycles plays a major physiological role in the overall energy economy. The K+ cycle maintains the integrity of the vesicular structure and includes the K+/H+ antiporter, the KATP channel, and K+ leak driven by the high membrane potential. The Ca2+ cycle relays the signals calling for modulation of ATP production and includes the Ca2+ channel, the Na+/Ca2+ antiporter, and the Na+/H+ antiporter. The H+ cycle of brown adipose tissue mitochondria provides heat to hibernating and newborn mammals and consists of the uncoupling protein, which catalyzes regulated H+ influx.  相似文献   

19.
Abstract Chara vulgaris L. growing in a brackish water lake was investigated in a field study during the main growth season (May to October 1985). Sucrose content and the ionic concentrations of the cations Na+, K+, Mg2+ and Ca2+ and the anions Cl? and SO42- of the vacuolar sap were estimated. Sucrose concentration in the vacuolar sap of vegetative growing plants was negligible, but with the beginning of the sexual reproduction period (fructification) the sucrose content increased from about 2 mol m?3 to 110 mol m?3. This level remained constant until the end of the fructification period. In spite of the increase of the sucrose concentration the osmotic potential of the vacuolar sap was constant. This was achieved by changing the ionic concentrations accordingly; in old or vegetative growing plants the ionic content accounted for about 80% of the vacuolar osmotic potential, but was about 63% during fructification. Sucrose is considered as a major photosynthate to supply the developing antheridia and oogonia and to serve as a precursor for the starch stored in the eggs.  相似文献   

20.
The roles of K+ uptake and loss in the salinity response of the wild type and the salt-tolerant mutant stl2 of Ceratopteris richardii were studied by measuring Rb+ influx and loss and the effects of Na+, Mg2+, Ca2+ and K+-transport inhibitors. In addition, electrophysiological responses were measured for both K+ and Rb+ and for the effects of Na+ and NH4+ on subsequent K+-induced depolarizations. stl2 had a 26–40% higher uptake rate for Rb+ than the wild type at 0.5–10 mol m?3 RbCl. Similarly, membrane depolarizations induced by both RbCl and KCl were consistently greater in stl2. In the presence of 0–180 mol m?3 NaCl, stl2 maintained a consistently greater Rb+ influx than the wild type. stl2 retained a greater capacity for subsequent KCl-induced depolarization following exposure to NaCl. Five mol m?3 Mg2+ decreased Rb+ uptake in stl2; however, additional Mg2+ up to 40 mol m?3 did not affect Rb+ uptake further. Ca2+ supplementation resulted in a very minor decrease of Rb+ uptake that was similar in the two genotypes. Tetraethylammonium chloride and CsCl gave similar inhibition of Rb+ uptake in both genotypes, but NH4Cl gave substantially greater inhibition in the wild type than in stl2. NH4Cl resulted in a greater membrane depolarization in the wild type and the capacity for subsequent depolarization by KCl was markedly reduced. stl2 exhibited a higher Independent loss of Rb+ than the wild type, but, in the absence of external K+, loss of Rb+ was equivalent in the two genotypes. Since constitutive K+ contents are nearly identical, we conclude that high K+ influx and loss exact a metabolic cost that is reflected in the inhibition of gametophytic growth. Growth inhibition can be alleviated by reduced supplemental K+ or by treatments that slightly reduce K+ influx, such as moderate concentrations of Na+ or Mg2+. We propose that high throughput of K+ allows maintenance of cytosolic K+ under salt stress and that a high uptake rate for K+ results in a reduced capacity for the entrance and accumulation of alternative cations such as Na+ in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号