首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu L  Miao H  Guo L 《DNA and cell biology》2005,24(3):180-188
Xenotransplantation from pig to human being is viewed as a potential solution for the acute organ shortage. However, consequent xenorejection induced by Gal alpha 1,3 Gal (Gal, Gal antigen) prevents xenotransplantation from clinical application. Thus, the most attracting attempt to prevent xenorejection is the elimination of Gal. Our study suggested that compared with the human alpha 1,2 fucosyltransferase (FT) gene and porcine antisense alpha 1,3 galactosyltransferase gene, sequence-specific siRNA targeting Gal were capable of suppressing Gal expression markedly, and therefore, significantly inhibiting xenoreactivity and the complement activation with human serum in PIEC cells. We also demonstrated the concordant inhibitory effect of siRNA and human FT gene on Gal and corresponding functions, which implied a practical significance of combined transgenic strategy. The successful application of vector-based dsRNA-GT may extend the list of available modalities in the abrogation of xenorejection in xenotransplantation.  相似文献   

2.
3.
The important xenoepitope Galalpha(1,3)Gal was thought to be exclusively synthesized by a single alpha(1,3)galactosyltransferase. However, the cloning of the distant family member rat iGb3 synthase, which is also capable of synthesizing Galalpha(1,3)Gal as the glycolipid structure iGb3, challenges the notion that alpha(1,3)galactosyltransferase is the sole Galalpha(1,3)Gal-synthesizing enzyme. We describe the cloning of the rat homolog of alpha(1,3)galactosyltransferase, showing that indeed the rat expresses two distinct alpha(1,3)galactosyltransferases, alpha(1,3)GT and iGb3 synthase. Rat alpha(1,3)galactosyltransferase shows a high amino acid sequence identity with the alpha(1,3)galactosyltransferase of mouse (90%), pig (76%), and ox (75%), in contrast to the low amino acid sequence identity (42%) with iGb3 synthase. The rat alpha(1,3)galactosyltransferase is expressed in heart, brain, spleen, kidney, and liver and has a similar intron/exon structure to the mouse alpha(1,3)galactosyltransferase. Transfection studies show that in contrast to the iGb3 synthase, rat alpha(1,3)galactosyltransferase can synthesize Galalpha(1,3)Gal on glycoproteins but cannot synthesize the glycolipid iGb3, defining two separate glycosylation pathways for the synthesis of Galalpha(1,3)Gal. Furthermore iGb3 synthase was found to be distinct from alpha(1,3)GT with its ability to synthesize poly-alpha-Gal glycolipid structures.  相似文献   

4.
The Gal alpha 1-3Gal structural determinant has been found to have a unique distribution in mammals. Although this determinant is abundantly expressed by erythrocytes and nucleated cells of many mammals, it has not been detected in human cells. However, our previous studies (Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) J. Exp. Med. 160, 1519-1531; Galili, U., Clark, M. R., and Shohet, S. B. (1986) J. Clin. Invest. 77, 27-33) have suggested that this epitope is present in small amounts and may be involved in immune-mediated destruction of senescent human erythrocytes. To have a means for exploring this possibility and for studying the species and tissue distribution of this epitope we have raised a monoclonal antibody (Gal-13) which specifically binds to glycoconjugates with a nonreducing terminal Gal alpha 1-3Gal disaccharide. Mice were immunized with rabbit erythrocytes, which express an abundance of glycoconjugates with Gal alpha 1-3Gal epitopes. Clones were screened with a solid-phase binding assay (enzyme-linked immunosorbent assay) for antibodies which bound to ceramide pentahexoside (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3-Gal beta Gal beta 1-4Glc1-1Cer) but not to ceramide trihexoside (Gal alpha 1-4Gal beta 1-4Glc1-1Cer). Gal-13 bound to a number of neutral glycosphingolipids from rabbit and bovine erythrocytes. These glycosphingolipids have previously been shown to be a family of linear and branched polylactosamine structures, which have non-reducing terminal Gal alpha 1-3Gal epitopes. The antibody did not bind to the human blood group B glycolipid, Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc1-1Cer, and, therefore, branching at the penultimate galactose blocks Gal-13 binding. However, after removal of the fucose from the B antigen Gal-13 recognized the resulting derivative. Other Gal alpha 1-3Gal glycosphingolipids with an isogloboside or globoside core structure were not recognized by Gal-13 suggesting that the antibody binds to Gal alpha 1-3Gal carried by a lactosamine core structure. Gal-13 has been used to demonstrate that the Gal alpha 1-3Gal ceramide pentahexoside has been evolutionarily conserved in red cells of animals up to the stage of New World monkeys but is not found in Old World monkey red cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

6.
Carbohydrates are involved in many immunological responses including the rejection of incompatible blood, tissues and organs. Carbohydrate antigens with Galalpha(1,3)Gal epitopes are recognized by natural antibodies in humans and pose a major barrier for pig-to-human xenotransplantation. Genetically modified pigs have been established that have no functional alpha1,3-galactosyltransferase (alpha1,3GT), which transfers alphaGal to N-acetyllactosamine (LacNAc) type oligosaccharides. However, a low level of Galalpha(1,3)Gal is still expressed in alpha1,3GT knockout animals in the form of a lipid, isoglobotrihexosylceramide (iGb3), which is produced by iGb3 synthase on lactose (Lac) type core structures. Here, we define the reactivity of a series of monoclonal antibodies (mAb) generated in alpha1,3GT-/- mice immunized with rabbit red blood cells (RbRBC), as a rich source of lipid-linked antigens. Interestingly, one mAb (15.101) binds weakly to synthetic and cell surface-expressed Galalpha(1,3)Gal on LacNAc, but strongly to versions of the antigen on Lac cores, including iGb3. Three-dimensional models suggest that the terminal alpha-linked Gal binds tightly into the antibody-binding cavity. Furthermore, antibody interactions were predicted with the second and third monosaccharide units. Collectively, our findings suggest that although the terminal carbohydrate residues confer most of the binding affinity, the fine specificity is determined by subsequent residues in the oligosaccharide.  相似文献   

7.
Transplants from alpha1,3-galactosyltransferase (Gal) gene-knockout pigs to nonhuman primates are largely protected from hyperacute but not acute humoral xenograft rejection. The present study investigates the role of Gal in cytokine responses using a novel pig-to-human whole blood in vitro model, developed for species-specific analysis of porcine and human cytokines. Porcine (n = 7) and human (n = 27) cytokines were measured using ELISA or multiplex technology, respectively. Porcine aortic endothelial cells from control (Gal(+/+)) and Gal-deficient (Gal(-/-)) pigs were incubated with human lepirudin anticoagulated whole blood from healthy donors. E-selectin expression was measured by flow cytometry. The C3 inhibitor compstatin and a C5aR antagonist were used to study the role of complement. Cytokine species specificity was documented, enabling detection of 2 of 7 porcine cytokines and 13 of 27 human cytokines in one single sample. Gal(+/+) porcine aortic endothelial cells incubated with human whole blood showed a marked complement C5b-9 dependent up-regulation of E-selectin and secretion of porcine IL-6 and IL-8. In contrast, Gal(-/-) cells responded with E-selectin and cytokine expression which was so weak that the role of complement could not be determined. Human IL-6, IL-8, IFN-gamma, MIP-1alpha, MIP-1beta, eotaxin, and RANTES were detected in the Gal(+/+) system, but virtually no responses were seen in the Gal(-/-) system (p = 0.03). The increase in human cytokine release was largely complement dependent and, in contrast to the porcine response, mediated through C5a. Species-specific analysis of cytokine release revealed a marked, complement-dependent response when Gal(+/+) pig cells were incubated with human whole blood, compared with Gal(-/-) cells which induced virtually no cytokine release.  相似文献   

8.
The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal. As iGb3 synthase (iGb3S) is a candidate glycosyltransferase, we cloned iGb3S cDNA from GGTA1(-/-) mouse thymus and confirmed mRNA expression in both mouse and pig tissues. The mouse iGb3S gene exhibits alternative splicing of exons that results in a markedly different cytoplasmic tail compared with the rat gene. Transfection of iGb3S cDNA resulted in high levels of cell surface Galalpha(1,3)Gal synthesized via the isoglobo series pathway, thus demonstrating that mouse iGb3S is an additional enzyme capable of synthesizing the xenoreactive Galalpha(1,3)Gal epitope. Galalpha(1,3)Gal synthesized by iGb3S, in contrast to alpha1,3GT, was resistant to down-regulation by competition with alpha1,2fucosyltransferase. Moreover, Galalpha(1,3)Gal synthesized by iGb3S was immunogenic and elicited Abs in GGTA1 (-/-) mice. Galalpha(1,3)Gal synthesized by iGb3S may affect survival of pig transplants in humans, and deletion of this gene, or modification of its product, warrants consideration.  相似文献   

9.
Synthetic glycosides containing the core, -Glc-NAc beta 1,6GalNAc alpha-, acted as acceptors for beta-galactosyltransferase of human ovarian tumor. A significant amount of Gal was transferred from UDP-Gal (100 nmol) to the alpha-benzylglycoside of LacNAc beta 1,6GalNAc (LGBn) (25.1 nmol of Gal) and the alpha-ortho-nitrophenylglycosides of LacNAc beta 1,6GalNAc (22.0 nmol of Gal), GlcNAc beta 1,6GalNAc (15.5 nmol of Gal), and Fuc alpha 1,3GlcNAc beta 1,6GalNAc (25.9 nmol of Gal); LacNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn (where Bn is benzyl) was almost inactive (only 1.2 nmol of Gal), indicating the Gal transfer to the alpha-GalNAc moiety. The product from LGBn was isolated in microgram quantities and identified by fast atom bombardment mass spectrometry as LacNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn. The alpha GalNAc:beta 1,3Gal transferase was present in high concentration in ovarian tumor tissue (ovarian cancer serum----1.4; ascitic fluid----0.9; tumor----17.4). Asialo Cowper's gland mucin (ACGM) at 5 mg/ml reaction mixture inhibited the transfer of Gal to LGBn (25.2 and 53.4% respectively for 2 and 18 h incubation at 37 degrees C); inhibition by LGBn was 13.4 and 24.5%, respectively. In contrast to the inhibition by ACGM (25.2-31.6%), there was substantial increase (13.4-35.7%) in the inhibition by LGBn, when the incubation for 2 h at 37 degrees C was continued for 40 h at 4 degrees C, indicating the high affinity of LGBn for the enzyme at lower temp. Km for LGBn in presence of ACGM was 7.6 mM and in absence, 2.7 mM; Km for ACGM (M(r) 200,000) in presence of LGBn was 16.1 microM and Ki for ACGM (as the inhibitor) was 41.7 microM. In comparison with two normal ovarian tissues, the enzyme was found to be low (55-67%) in three ovarian tumors and high (146-260%) in two ovarian and one uterus tumors, as measured with ACGM; the synthetic acceptors showed similar activities. The enzyme had nearly the same extent of activity in the pH range 6-8. Fuc alpha 1,3GlcNAc beta 1,6GalNAc alpha-O-ONP had the highest affinity for the enzyme. The present study demonstrates the feasibility of beta 1,3Gal attachment on alpha GalNAc, which has already been substituted by beta 1,6GlcNAc, then elongated by beta 1,4Gal and also terminated by alpha 1,3Fuc.  相似文献   

10.
11.
We report on the identification, molecular cloning, and characterization of an alpha1,3 fucosyltransferase (alpha1,3FT) expressed by the nematode, Caenorhabditis elegans . Although C. elegans glycoconjugates do not express the Lewis x antigen Galbeta1-- >4[Fucalpha1-->3]GlcNAcbeta-->R, detergent extracts of adult C.elegans contain an alpha1,3FT that can fucosylate both nonsialylated and sialylated acceptor glycans to generate the Lexand sialyl Lexantigens, as well as the lacdiNAc-containing acceptor GalNAcbeta1-->4GlcNAcbeta1-- >R to generate GalNAcbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R. A search of the C.elegans genome database revealed the existence of a gene with 20-23% overall identity to all five cloned human alpha1,3FTs. The putative cDNA for the C.elegans alpha1,3FT (CEFT-1) was amplified by PCR from a cDNA lambdaZAP library, cloned, and sequenced. COS7 cells transiently transfected with cDNA encoding CEFT-1 express the Lex, but not sLexantigen. The CEFT-1 in the transfected cell extracts can synthesize Lex, but not sialyl Lex, using exogenous acceptors. A second fucosyltransferase activity was detected in extracts of C. elegans that transfers Fuc in alpha1,2 linkage to Gal specifically on type-1 chains. The discovery of alpha-fucosyltransferases in C. elegans opens the possibility of using this well-characterized nematode as a model system for studying the role of fucosylated glycans in the development and survival of C.elegans and possibly other helminths.   相似文献   

12.
Schizosaccharomyces pombe whole-cell glycoproteins, previously depleted of N-linked glycans by sequential treatment with endo-ss-N-acetylglucosaminidase H and peptide-N4-asparagine amidohydrolase F, were ss-eliminated with 0.1 M NaOH/1 M NaBH4 to release the O-linked oligosaccharides. The saccharide-alditols were separated by gel-exclusion chromatography into pools from Hexitol to Hex4Hexitol in size. Analysis of the Hexitol pool indicated Man to be the only sugar linked to Ser or Thr residues. The Hex1Hexitol pool contained two components, Galalpha1,2Man-ol (2A) and Manalpha1, 2Man-ol (2B). The Hex2Hexitol pool contained two components, Galalpha1,2Manalpha1,2Man-ol (3A) and Manalpha1,2Manalpha1,2Man-ol (3B). The two Hex3Hexitol components were Galalpha1,2(Galalpha1, 3)Manalpha1,2Man-ol (4A) and Manalpha1,2(Galalpha1,3)Manalpha1, 2Man-ol (4B). The Hex4Hexitol component was found to be a single isomer with the composition of Galalpha1,2(Galalpha1,3)Manalpha1, 2Manalpha1,2Man-ol (5AB). Surprisingly, galactobiose was not detected in any of these oligosaccharides. The gma12 (T. G. Chappell and G. Warren (1989) J. Cell Biol., 109, 2693-2707) and gth1 (T. G. Chappell personal communication) alpha1, 2-galactosyltransferase-deficient mutants and the gma12/gth1 double mutant S.pombe strains were similarly examined. The results indicated that gma12p is solely responsible for the addition of terminal alpha1,2-linked Gal in compound 2A, while one or both of gma12p and gth1p are required for the alpha1,2-linked Gal in 4A. Both transferases are largely responsible for terminal Gal in isomer 5AB. Neither gma12 nor gth1 had any discernible effect on the structure of the large N-linked galactomannans as determined by 1H NMR spectroscopy. Thus, while gth1p and gma12p appear responsible for adding alpha1,2-linked Gal to terminal Man, neither adds galactose side chains to the N-linked poly alpha1,6-Man outerchain, nor the O-linked branch-forming alpha1,3-linked Gal. Furthermore, the presence of Hexalpha1,2(Galalpha1,3)Manalpha1,2- structures in the O-linked glycans implies the presence of a novel branch-forming alpha1,3-galactosyltransferase in S.pombe.  相似文献   

13.
R R Townsend  M R Hardy  T C Wong  Y C Lee 《Biochemistry》1986,25(19):5716-5725
Glycopeptides were isolated from bovine fetuin after digestion with Pronase, aminopeptidase M, and carboxypeptidase Y. The glycopeptides were derivatized with tert-butyloxycarbonyltyrosine and separated on the basis of peptide by using reverse-phase high-performance liquid chromatography. Using 400-MHz 1H NMR, the asialotriantennary oligosaccharides at each of the three N-linked glycosylation sites were found to be combinations of the following two structures in which the third branch is either Gal beta(1,4)GlcNAc or Gal beta(1,3)GlcNAc: (formula; see text) The asialotriantennary glycopeptides containing all beta(1,4)-lactosamine as the branches were designated Gal beta(1,4)GlcNAc-TRI while triantennary glycopeptides containing beta(1,3)-lactosamine as branch III were termed Gal beta(1,3)GlcNAc-TRI. The Gal beta(1,3)GlcNAc unit was localized predominantly to the branch III arm on the basis of a downfield shift (-0.027 ppm) in the H-1 and upfield shift (0.01 ppm) in the NAc methyl signals from the branch III GlcNAc resulting from Gal beta(1,3) instead of Gal beta(1,4) substitution. Revised assignments are proposed for the H-1's of Gal residues 6 (delta 4.464) and 8 (delta 4.471) [Vliegenthart, J. F. G., Dorland, L., & van Halbeek, H. (1983) Adv. Carbohydr. Chem. Biochem. 41, 209-373] in a Gal beta(1,4)GlcNAc-TRI. The proportion of Gal beta(1,3)GlcNAc-TRI glycopeptides from the Asn-Asp, Asn-Gly, and Asn-Cys sites was found to be 40%, 60%, and 20%, respectively. Analysis of the binding of these glycopeptides, containing from 20% to 60% Gal beta(1,3)GlcNAc as branch III, to rabbit hepatocytes revealed that the greater the proportion of Gal beta(1,3)GlcNAc, the lower the affinity of the mixture. The Kd for Gal beta(1,4)GlcNAc-TRI was found to be between 3.6 and 5.4 nM (P = 0.10) with a mean of 4.4 nM from binding data analyzed by using the LIGAND program [Munson, P. J., & Rodbard, D. (1980) Anal. Biochem. 107, 220-239] and computer simulations of the binding of two ligands as a mixture to one receptor site. The Kd of Gal beta(1,3)GlcNAc-TRI oligosaccharide, prepared by hydrazinolysis, was found to be 305 nM from inhibition studies.  相似文献   

14.
Enzymatic 3-O-sulfation of terminal ß-Gal residueswas investigated by screening sulfotransferase activity presentin 37 human tissue specimens toward the following synthesizedacceptor moieties: Galß1,3GalNAc-O-Al, Galß1,4GlcNAcß-O-Al,Galß1,3GlcNAcß-O-Al, and mucin-type Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnstructures containing a C-3 methyl substituent on either Gal.Two distinct types of Gal: 3-O-sulfotransferases were revealed.One (Group A) was specific for the Galß1, 3GalNAc-linkage and the other (Group B) was directed toward the Galß1,4GlcNAcbranch ß1,6 linked to the blood group T hapten. Enzymeactivities found in breast tissues were unique in showing astrict specificity for the T-hapten. Galß-O-allylor benzyl did not serve as acceptors for Group A but were veryactive with Group B. An exainination of activity present insix human sera revealed a specificity of the serum enzyme towardß1,3 linked Gal, particularly, the T-hapten withoutß1,6 branching. Group A was highly active toward T-haptenlacrylamidecopolymer, anti-freeze glycoprotein, and fetuin O-glycosidicasialo glycopeptide; less active toward fetuin triantennaryasialo glycopeptide; and least active toward bovine IgG diantennaryglycopeptide. Group B was moderately and highly active, respectively,with the latter two glycopeptides noted and least active withthe first two. Competition experiments performed with Galß1,3GaLNAc-O-Aland Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnhaving a C-3 substituent (methyl or sulfate) on either Gal reinforcedearlier findings on the specificity characteristics of GroupA and Group B. Group A displayed a wider range of optimal activity(pH 6.0–7.4), whereas Group B possessed a peak of activityat pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereasMn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+stimulated Group B 100% but inhibited Group A 35%. Group A andGroup B enzymes appeared to be of the same molecular size (<100,000Da) as observed by Sephacryl S-100 HR column chromatography.The following effects upon Gal: 3-O- sulfotransferase activitiesby fucose, sulfate, and other substituents on the carbohydratechains were noted. (1) A methyl or GlcNAc substituent on C-6of GalNAc diminished the ability of Galß1,3GalNAc-O-Alto act as an acceptor for Group A. (2) An 1,3-fucosyl residueon the ß1,6 branch in the mucin core structure didnot affect the activity of Group A toward Gal linked ß1,3to GalNAc-. (3) Lewis x and Lewis a terminals did not serveas acceptors for either Group A or B enzymes. (4) Eliminationof Group B activity on Gal in the ß1,6 branch owingto the presence of a 3-fucosyl or 6-sulfo group on GlcNAc didnot hinder any action toward Gal linked ß1,3 to GalNAc.(5) Group A activity on Gal linked ß1,3 to GalNAcremained imaffected by 3'-sulfation of the ß1,6 branch.The reverse was true for Group B. (6) The acceptor activityof the T-hapten was increased somewhat upon C-6 sulfation ofGalNAc, whereas, C-6 slalylation resulted in an 85% loss ofactivity. (7) A novel finding was that Galß1,4GlcNAcß-O-Aland Galß1,3GlcNAcß-O-M, upon C-6 sulfationof the GlcNAc moiety, became 100% inactive and 5- to 7-foldactive, respectively, in their ability to serve as acceptorsfor Group B. human tissues glycoprotein galactose:sulfotransferase specificities kinetic properties  相似文献   

15.
Sulfated glycoconjugates regulate biological processes such as cell adhesion and cancer metastasis. We examined the acceptor specificities and kinetic properties of three cloned Gal:3-O-sulfotransferases (Gal3STs) ST-2, ST-3, and ST-4 along with a purified Gal3ST from colon carcinoma LS180 cells. Gal3ST-2 was the dominant Gal3ST in LS180. While the mucin core-2 structure Galbeta1,4GlcNAcbeta1,6(3-O-MeGalbeta1,3)GalNAcalpha-O-Bn (where Bn is benzyl) and the disaccharide Galbeta1,4GlcNAc served as high affinity acceptors for Gal3ST-2 and Gal3ST-3, 3-O-MeGalbeta1,4GlcNAcbeta1,-6(Galbeta1,3)GalNAcalpha-O-Bn and Galbeta1,3GalNAcalpha-O-Al (where Al is allyl) were efficient acceptors for Gal3ST-4. The activities of Gal3ST-2 and Gal3ST-3 could be distinguished with the Globo H precursor (Galbeta1,3GalNAcbeta1,3Galalpha-O-Me) and fetuin triantennary asialoglycopeptide. Gal3ST-2 acted efficiently on the former, while Gal3ST-3 showed preference for the latter. Gal3ST-4 also acted on the Globo H precursor but not the glycopeptide. In support of the specificity, Gal3ST-2 activity toward the Galbeta1,4GlcNAcbeta unit on mucin core-2 as well as the Globo H precursor could be inhibited competitively by Galbeta1,4GlcNAcbeta1,6(3-O-sulfoGalbeta1,3)GalNAcalpha-O-Bn but not 3-O-sulfoGalbeta1,-4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn. Remarkably these sulfotransferases were uniquely specific for sulfated substrates: Gal3ST-3 utilized Galbeta1,4(6-O-sulfo)-GlcNAcbeta-O-Al as acceptor, Gal3ST-2 acted efficiently on Galbeta1,3(6-O-sulfo)GlcNAcbeta-O-Al, and Gal3ST-4 acted efficiently on Galbeta1,3(6-O-sulfo)GalNAcalpha-O-Al. Mg(2+), Mn(2+), and Ca(2+) stimulated the activities of Gal3ST-2, whereas only Mg(2+) augmented Gal3ST-3 activity. Divalent cations did not stimulate Gal3ST-4, although inhibition was noted at high Mn(2+) concentrations. The fine substrate specificities of Gal3STs indicate a distinct physiological role for each enzyme.  相似文献   

16.
17.
We provide evidence for the presence of targeting signals in the cytoplasmic, transmembrane, and stem (CTS) regions of Golgi glycosyltransferases that mediate sorting of their intracellular catalytic activity into different functional subcompartmental areas of the Golgi. We have constructed chimeras of human alpha1, 3-fucosyltransferase VI (FT6) by replacement of its CTS region with those of late and early acting Golgi glycosyltransferases and have stably coexpressed these constructs in BHK-21 cells together with the secretory reporter glycoprotein human beta-trace protein. The sialyl Lewis X:Lewis X ratios detected in beta-trace protein indicate that the CTS regions of the early acting GlcNAc-transferases I (GnT-I) and III (GnT-III) specify backward targeting of the FT6 catalytic domain, whereas the CTS region of the late acting human alpha1,3-fucosyltransferase VII (FT7) causes forward targeting of the FT6 in vivo activity in the biosynthetic glycosylation pathway. The analysis of the in vivo functional activity of nine different CTS chimeras toward beta-trace protein allowed for a mapping of the CTS donor glycosyltransferases within the Golgi/trans-Golgi network: GnT-I < (ST6Gal I, ST3Gal III) < GnT-III < ST8Sia IV < GalT-I < (FT3, FT6) < ST3Gal IV < FT7. The sensitivity or resistance of the donor glycosyltransferases toward intracellular proteolysis is transferred to the chimeric enzymes together with their CTS regions. Apparently, there are at least three different signals contained in the CTS regions of glycosyltransferases mediating: first, their Golgi retention; second, their targeting to specific in vivo functional areas; and third, their susceptibility toward intracellular proteolysis as a tool for the regulation of the intracellular turnover.  相似文献   

18.
Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs   总被引:34,自引:0,他引:34  
Galactose-alpha1,3-galactose (alpha1,3Gal) is the major xenoantigen causing hyperacute rejection in pig-to-human xenotransplantation. Disruption of the gene encoding pig alpha1,3-galactosyltransferase (alpha1,3GT) by homologous recombination is a means to completely remove the alpha1,3Gal epitopes from xenografts. Here we report the disruption of one allele of the pig alpha1,3GT gene in both male and female porcine primary fetal fibroblasts. Targeting was confirmed in 17 colonies by Southern blot analysis, and 7 of them were used for nuclear transfer. Using cells from one colony, we produced six cloned female piglets, of which five were of normal weight and apparently healthy. Southern blot analysis confirmed that these five piglets contain one disrupted pig alpha1,3GT allele.  相似文献   

19.
The Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase forms the NeuAc alpha 2,3Gal beta 1,3(4)GlcNAc sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. High energy collision-induced dissociation analysis of tryptic peptides from only 300 pmol of the purified Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase provided 25% of the total amino acid sequence and led to the successful cloning of this enzyme. The peptide sequence information was used to design short degenerate primers for use in the polymerase chain reaction. A long specific cDNA fragment was amplified which was used to isolate a clone from a rat liver cDNA library. The cloned cDNA encodes a 374-amino acid protein containing an amino-terminal signal-anchor sequence characteristic of all cloned glycosyltransferases and produced sialyltransferase activity when transiently expressed in COS-1 cells. When compared with two other cloned sialyltransferases, the primary structure of Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase revealed a homologous region in all three enzymes consisting of a stretch of 55 amino acids located in their catalytic domains. This feature together with lack of homology in the remaining 85% of the sequence of the three sialyltransferases defines a pattern of sequence homology not found in cloned cDNAs of other glycosyltransferase families.  相似文献   

20.
XingL XiaGH 《Cell research》2001,11(2):116-124
Gal alpha(1, 3) Gal (gal epitope) is a carbohydrate epitope and synthesized in large amount by alpha(1, 3) galactosyltransferase [alpha(1, 3) GT] enzyme on the cells of lower mammalian animals such as pigs and mice. Human has no gal epitope due to the inactivation of alpha(1, 3) GT gene but produces a large amount of antibodies (anti-Gal) which recognize Gal alpha(1, 3) Gal structures specifically. In this study, a replication-deficient recombinant adenoviral vector Ad5sGT containing pig alpha(1, 3) GT cDNA was constructed and characterized. Adenoviral vector-mediated transfer of pig alpha(1, 3) GT gene into human tumor cells such as malignant melanoma A375, stomach cancer SGC-7901, and lung cancer SPC-A-1 was reported for the first time. Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis, although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction. Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I (UEA I) lectins, Vicia villosa agglutinin (VVA), Arachis hypogaea agglutinin (PNA), and Glycine max agglutinin (SBA) to different degrees. In addition, no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号