首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in plant growth arising from differences in aggregate size in the seedbed are normally atributed to limitations in nutrient or water supply during the early growth period. This study was initiated to determine if these were the only mechanisms by which aggregate size influences plant response. Four different aggregate size fractions (less than 1.6 mm, 1.6 to 3.2 mm, 3.2 to 6.4 mm and 6.4 to 12.8 mm diameter) were sieved from a silt loam soil. Nutrients were added to the soil and maize was grown in the aggregates for eighteen days after seedling emergence. Soil matric potential was maintained between — 3 and −20 kPa. Shoot dry weight declined by 18% as aggregate size increased from less than 1.6 mm to 1.6–3.2 mm. There was little further decline as aggregate size increased to 6.4–12.8 mm. Final leaf area showed a similar decline. The availability of nutrients or water were not limiting. Total root length in the coarsest aggregate system was less than 60% of that in the finest system. Main axes of seminal and nodal roots were longer in the coarser aggregate systems, the length of primary laterals was not affected, and length of secondary laterals was lower in the coarser systems. A greater proportion of the roots penetrated the larger aggregates than the smaller aggregates; however, the larger aggregates offered greater resistance to penetration by a rigid micropenetrometer (150 μ diameter probe). Diameter of the main axes roots were greatest in the largest two aggregate fractions. it is speculated that a combination of increased endogenous ethylene in roots in the finest aggregate system due to entrapment by water and increased mechanical resistance in the coarsest aggregate system accounts for the observed effects on root norphology.  相似文献   

2.
Studying Arabidopsis thaliana (L.) Heynh. root development in situ at the whole plant level without affecting shoot development has always been a challenge. Such studies are usually carried out on individual plants, neglecting competition of a plant population, using hydroponic systems or Agar-filled Petri dishes. Those both systems, however, present some limitations, such as difficulty to study precisely root morphogenesis or time-limited culture period, respectively. In this paper, we present a method of Arabidopsis thaliana (L.) Heynh. cultivation in soil medium, named “Ara-rhizotron”. It allows the non-destructive study of shoot and root development simultaneously during the entire period of vegetative growth. In this system, roots are grown in 2D conditions, comparable to other soil cultures. Moreover, grouping several Ara-rhizotrons in a box enables the establishment of 3D shoot competition as for plants grown in a population. In comparison to a control culture grown in pots in the same environmental conditions, the Ara-rhizotron resulted in comparable shoot development in terms of dry mass, leaf area, number of leaves and nitrogen content. We used this new culture system to study the effect of irrigation modalities on plant development. We found that irrigation frequency only affected root partitioning in the soil and shoot nitrogen content, but not shoot or root growth. These effects appeared at the end of the vegetative growth period. This experiment highlights the opportunity offered by the Ara-rhizotron to point out tardy effects, affecting simultaneously shoot development and root architecture of plants grown in a population. We discuss its advantages in relation to root development and physiology, as well as its possible applications.  相似文献   

3.
Ephrath  J. E.  Silberbush  M.  Berliner  P. R. 《Plant and Soil》1999,209(2):201-208
The minirhiozotron (MR) root observation method was studied versus root length density (RLD) obtained from soil cores. Two plant species, acacia (Acacia saligna) and wheat (Triticum aestivum L.) were grown in a 1-m3 container on Silt Loam (Typic Torrifluvent) and on fine dune sand (Typic Torripsamment), respectively. Roots of both plants were measured periodically by the two methods. The MR observation tubes (MROT) were inserted, either vertically or at 45°. The correlation between the number of roots obtained by the MR and RLD was significant for the entire profile. However, an appreciable error in root estimation by the MR root observation method at the upper 10-cm soil might occur. No significant difference was obtained from MROT oriented vertically or at 45°. The differences between the correlation coefficients of the two methods were not significant, for both plants and soils, indicating that this correlation expresses the geometry of the two measurement systems, not affected by plant or soil types. We concluded that the MR method may be used as an in situ, non-destructive root measuring method with reasonable confidence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Deep root development, which is important for the drought resistance in rice (Oryza sativa L.), is a complex trait combining various root morphologies. The objective of this study was to elucidate genotypic variation in deep root development in relation to morphological indicators such as vertical root distribution and root growth angle. Two experiments were conducted: one on upland fields, and one in pots and fields. In experiment 1, the root systems of six rice cultivars on upland fields were physio-morphologically analyzed under different water regimes (irrigated and intermittent drought conditions during panicle development). In experiment 2, cultivar differences in root growth angles were evaluated with 12 cultivars using the basket method under irrigated conditions. No cultivar × environment interactions were found for total root length or deep root length between irrigated and drought conditions in experiment 1. This suggests that constitutive root growth, which is genetically determined, is important for deep root development under intermittent drought conditions during reproductive stage. Among root traits, the deep root ratio (i.e., deep root weight divided by total root weight) was most closely related to deep root length under both water regimes. This suggested that vertical root distribution constitutively affects deep root length. Significant genotypic variation existed in the nodal root diameter and root growth angle of upland rice in experiment 2. It was considered that genotypes with thick roots allocated more assimilates to deep roots through root growth angles higher to the horizontal plane on upland fields. This is the first report on genotypic variation in the root growth angle of rice on upland fields. It should prove useful for rough estimations of genotypic variation in the vertical root distribution of upland rice because root growth angle is rapidly and easily measured.  相似文献   

5.
An obstacle to the study of root architecture is the difficulty of measuring and quantifying the three-dimensional configuration of roots in soil. The objective of this work was to determine if fractal geometry might be useful in estimating the three-dimensional complexity of root architecture from more accessible measurements. A set of results called projection theorems predict that the fractal dimension (FD) of a projection of a root system should be identical to the FD of roots in three-dimensional space (three-dimensional FD). To test this prediction we employed SimRoot, an explicit geometric simulation model of root growth derived from empirical measurements of common bean (Phaseolus vulgaris L.). We computed the three-dimensional FD, FD of horizontal plane intercepts (planar FD), FD of vertical line intercepts (linear FD), and FD of orthogonal projections onto planes (projected FD). Three-dimensional FD was found to differ from corresponding projected FD, suggesting that the analysis of roots grown in a narrow space or excavated and flattened prior to analysis is problematic. A log-linear relationship was found between FD of roots and spatial dimension. This log-linear relationship suggests that the three-dimensional FD of root systems may be accurately estimated from excavations and tracing of root intersections on exposed planes.  相似文献   

6.
The root systems of cereal seedlings (wheat, rye, barley, oats),grown in a series of liquid and solid media at 5, 15 and 25?C, were measured at intervals between sowing and emergence(shoot length 4.0 cm). In all cases, the length of seminal axesincreased linearly with time, and the rate of root extensionwas increased significantly by each 10 ?C increment in growingtemperature. In general, extension rates were lower in the solidmedia than in water culture; however, there was a strong interactionbetween medium and growing temperature, indicating that highertemperatures can compensate partly for the detrimental effectsof mechanical impedance. Examination of the influence of growing temperature upon rootaxis diameter was hampered by the observation that, for allfour species, apical root diameter was inversely related toroot length. It was concluded that comparison of the diametersof roots grown at different temperatures was valid only if theroots were of the same length (but different ages). Followingthis principle, it was found that, although cereal roots grownat 5 ?C tended to be slightly thicker than those at 15 ?C or25 ?C, this effect was small and rarely exceeded 10%. Publishedreports of very large differences in root diameter at differentgrowing temperatures were examined and found to be generallyunreliable. Lateral roots did not represent a significant fractionof the root system in any of the treatments studied. Root: shoot relationships at different growing temperatureswere examined by plotting root system length against shoot lengthfor each sample. It was found that, for the same shoot length,the root systems at 5 ?C were much shorter than at 25 ?C, theresponse at 15 ?C being rather more variable. This finding,which indicates that plants grown at low temperatures have alower capacity for water and solute uptake than those grownat laboratory temperatures, has important implications for thedesign of laboratory experiments. The influence of root zonetemperature upon root growth and physiology can be determinedunequivocably only if the roots have been exposed to the experimentaltemperature throughout their growth. Key words: Barley, Oats, Rye, Wheat, Root length, Root diameter, Root, shoot ratio  相似文献   

7.
Abstract

Roots grown in small chambers or rhizotrons combined with image analysis could be effective for screening traits of root morphology and architecture prior to field experimentation. The objective of this study was to evaluate and compare digital images of root systems with conventional root scans (RSCN) for several sorghum varieties grown in rhizotrons. Plants were grown in duplicate in slim (1.5‐cm thick) rhizotrons angled 15° to the vertical, filled with sandy topsoil and subsoil at field capacity (FC) or 50% available water content (AWC) in a split‐plot design in a glasshouse (16/24°C). Root growth visible on the glass surface was recorded weekly, and roots were washed out 42 and 90 days after sowing for digital imaging of the root systems on pin boards (PBI). The roots were then sub‐sampled to quantify the baseline root parameters from digital RSCN using WinRhizo® software with a flat‐bed scanner. Rhizotron images revealed little of the root system (1–2%) but PBI “recovered” up to 70% of the total root length (TRL) measured by RSCN. A high a priori image contrast, increased image resolution (9.1–12 megapixels) and optimized contrast threshold between roots and background were the key parameters in quantifying the roots from digital images. PBI revealed significant differences in rooting patterns, especially distribution of root length density (RLD) in the profile, which is useful for selecting varieties with improved resource capture. However, the root diameters estimated in the PBI were significantly larger than those measured by RSCN due to lack of contrast, root clustering and overlay.  相似文献   

8.
Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.  相似文献   

9.
A dynamic 3D model of root system development was adapted to young sessile oak seedlings, in order to evaluate the effects of grass competition on seedling root system development. The model is based on a root typology and the implementation of a series of developmental processes (axial and radial growth, branching, reiteration, decay and abscission). Parameters describing the different processes are estimated for each root type. Young oak seedlings were grown for 4 years in bare soil or with grass competition and were periodically excavated for root system observation and measurements (topology of the root system, length and diameter of all roots with a diameter greater than 0.3 mm). In the fourth year, 40 cm×20 cm×20 cm soil monoliths were excavated for fine root measurement (root density and root length). Root spatial development was analysed on a sub-sample of roots selected on four seedlings. The model was a guideline that provided a complete and consistent set of parameters to represent root system development. It gave a comprehensive view of the root systems and made it possible to quantify the effects of competition on the different root growth processes. The same root typology was used to describe the seedlings in bare soil and in grass. Five root types were defined, from large tap roots to fine roots. Root system size was considerably reduced by grass competition. Branching density was not affected but the branch roots were always smaller for the seedlings grown in competition. Reiteration capacity was also reduced by competition. Cross sectional areas before and after branching were linearly related with a scaling coefficient close to 1, as predicted by the pipe model theory. This relationship was not affected by grass competition.  相似文献   

10.
M. Blouin  S. Barot  C. Roumet 《Plant and Soil》2007,290(1-2):371-381
Describing root biomass distribution in diameter classes is a fundamental way to understand the relation between a plant and its surrounding soil. Current methods used for its measurement are not well adapted to large root systems. A new quick method is proposed for the measurement of diameter distribution in large root systems. It is based on the one used in pedology to assess soil granulometry. Roots are dried, cut in a mixer and placed on a sieve column; biomass distribution according to root diameter is assessed by weighting the biomass recovered in each sieve. The validity of the method was tested by comparing the sieving method results with those obtained on dried root systems with a digital image analysing system. A sensitivity analysis showed that the optimal rotation speed of the mixer was 2,000 rpm and the optimal sieving time was 22 min. The actual diameter distribution of artificial root mixtures of known root diameter distribution was closely correlated with the root biomass distribution measured by the sieving method (r 2 = 0.87). Its application to four identical root systems resulted in values of biomass per diameter class with small standard errors. It is the first method allowing directly to measure biomass (and not length) distribution in diameter classes. It is quick, cheap and does not require root system sub-sampling; consequently, large root systems which were almost never studied can now be analysed. This method is thus adequate for repeated measurements of root diameter distribution in agronomical or ecological research.  相似文献   

11.
黄土高原退耕草地植被根系动态分布特征   总被引:32,自引:0,他引:32  
采用土钻法研究了黄土高原不同退耕年限和天然草地植被根系的垂直分布特征.结果表明,样地上不同采样点间的根系分布不存在显著差异,根系指标的合并计算结果可以代表立地上植被根系的分布特征.植被根系生物量、根系长度等指标的垂直分布特征均表现出随着深度增加而减少的趋势;随着退耕年限的增加,植被根系的生物量、根系长度等指标逐渐增加,一般在退耕年限超过20年后,植被根系的分布特征接近天然草地的根系分布特征.随着退耕年限的增加,根系消失系数从0.98逐渐降低到0.96,说明植被在深层土壤中的相对含量逐渐减少,根系逐渐集中在0~40cm的表层土壤中.退耕植被根系分布特征的改善提高了土壤理化性质,有利于新物种入侵和植被演替进行.  相似文献   

12.
Species differences in patterns of phenotypic plasticity may be an important aspect of adaptive diversity. Plasticity for functionally important root traits was studied in inbred field lineages of Polygonum persicaria and P. cespitosum (Polygonaceae). Replicate seedlings were grown in plexiglass rhizotrons under a range of constant and temporally variable moisture treatments. Plasticity was determined for final whole-plant biomass, root biomass allocation, and absolute and proportional root length. The dynamic aspect of root plasticity was examined by digitizing weekly tracings of the proportional deployment of each plant's root system to different vertical soil layers. Plants of both species expressed significant functionally adaptive phenotypic plasticity in the relative allocation, length, and vertical deployment of root systems in response to contrasting moisture conditions. Plasticity patterns in these closely related species were in general qualitatively similar, but for most traits differed in the magnitude and/or the timing of the plastic response. Dynamic changes in root deployment were more marked as well as faster in P. persicaria. Species differences in patterns of individual plasticity were generally consistent with the broader ecological distribution of P. persicaria in diverse as well as temporally variable moisture habitats.  相似文献   

13.
细根(直径≤2 mm)功能性状及垂直分布格局是反映植物对土壤资源吸收策略和影响森林地下生态过程的关键。本研究以岷江上游4个人工林树种连香树(Cercidiphyllum japonicum)、白桦(Betula platyphylla)、华山松(Pinus armandii)和油松(P. tabuliformis)为对象,调查不同海拔树木细根功能性状及其在不同土层间的垂直分布格局,并分析细根功能性状分布与构型之间的相关关系。结果表明:阔叶树种比针叶树种有更大的根长密度、生物量、比根长和比表面积,而直径反之; 4个树种细根集中在0~20 cm土层,根长密度和生物量在较高海拔地段均显著大于较低海拔,且均随土壤深度增加而减少,但比根长、比表面积和直径无显著的海拔差异,随土层加深也无明显的垂直变化规律;针阔树种间的细根构型差异显著,但不受海拔差异的影响,阔叶树的细根分支强度与一级根数量显著大于针叶树种;一级根数和根尖密度与比根长以及分根比与根长密度和生物量均呈显著正相关,而分叉与几个细根功能参数均呈负相关;随着土层深度增加,细根总生长量明显减少,但细根资源利用效率和策略不变; 5个细根功能性状...  相似文献   

14.
Aluminum toxicity on root systems was analyzed through comparing root growth and evaluating the protective function of mucilage in Urochloa decumbens and Urochloa brizantha. Seedlings were grown in a solution with different concentrations of AlCl3 and with mucilage removed or present. The root elongation rate, total length, number of roots and presence of aluminum at the root apex were measured. Root development was inhibited by aluminum and the elongation rate was maintained without any difference between the two species. A significant reduction in root length was found in U. brizantha. Aluminum did not influence root branching in either species and accumulated mostly in the rhizosphere of U. brizantha, where the mucilage has less of a protective function. The greatest aluminum tolerance was found in U. decumbens, observed through maintenance of total root system growth from lower to higher aluminum toxicity.  相似文献   

15.
Summary The root systems of Scots pine in a plantation were studied by three methods; soil coring, soil monoliths, and a root trench with observation windows were used to estimate root length, root diameters and the initiatio of new root tips. The vertical and horizontal distribution of roots is described and root distribution has been related to distance from the tree and soil heterogeneity. It was found that the initiation of new root tips was not readily relatable to the soil environment and the usefulness of the root window technique for observing new root tips is questioned.  相似文献   

16.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

17.
We propose a method for assessing root profiles by means of hydrological, pedological and above-ground vegetation information. The method is analytical and allows one to relate the vertical distribution of plant roots to the local climatic and pedological conditions. The model does not require calibration and employs only data that are easily available. The model has been applied to two case studies in central Italy and proved effective for assessing both root area and average rooting depth as functions of depth. Plant rooting systems turn out to be closer to the soil surface where the soils are clay-textured and where the evaporation/precipitation ratio is large (intensive water use). The proposed methodology would be useful for slope ecosystem restoration, non-destructive analysis of the stability of vegetated slopes, and planning soil bio-engineering works.  相似文献   

18.
Morphometric analysis of root shape   总被引:2,自引:0,他引:2  
Alterations in the root shape in plant mutants indicate defects in hormonal signalling, transport and cytoskeleton function. To quantify the root shape, we introduced novel parameters designated vertical growth index (VGI) and horizontal growth index (HGI). VGI was defined as a ratio between the root tip ordinate and the root length. HGI was the ratio between the root tip abscissa and the root length. To assess the applicability of VGI and HGI for quantification of root shape, we analysed root development in agravitropic Arabidopsis mutants. Statistical analysis indicated that VGI is a sensitive morphometric parameter enabling detection of weak gravitropic defects. VGI dynamics were qualitatively similar in auxin-transport mutants aux1, pin2 and trh1, but different in the auxin-signalling mutant axr2. Analysis of VGI and HGI of roots grown on tilted plates showed that the trh1 mutation affected downstream cellular responses rather than perception of the gravitropic stimulus. All these tests indicate that the VGI and HGI analysis is a versatile and sensitive method for the study of root morphology.  相似文献   

19.
One key constraint to further understanding plant root development is the inability to observe root growth in situ due to the opaque nature of soil. Of the present non-destructive techniques, computed tomography (CT) is best able to capture the complexities of the edaphic environment. This study compared the accuracy and impact of X-ray CT measurement of in situ root systems with standard technology (soil core washing and WinRhizo analysis) in the context of treatments that differed in the vertical placement of phosphorus fertilizers within the soil profile. Although root lengths quantified using WinRhizo were 8% higher than that observed in the same plants using CT, measurements of root length by the two methodologies were highly correlated. Comparison of scanned and unscanned plants revealed no effect of repeated scanning on plant growth and CT was not able to detect any changes in roots between phosphorus treatments that was observed using WinRhizo. Overall, the CT technique was found to be fast, safe, and able to detect roots at high spatial resolutions. The potential drawbacks of CT relate to the software to digitally segment roots from soil and air, which will improve significantly as automated segmentation algorithms are developed. The combination of very fast scans and automated segmentation will allow CT methodology to realize its potential as a high-throughput technique for the quantification of roots in soils.  相似文献   

20.
Suboptimal levels of phosphorus (P) strongly inhibited leaf expansion in young cotton (Gossypium hirsutum L.) plants during the daytime, but had little effect at night. The effect of P was primarily on cell expansion. Compared to plants grown on high P, plants grown on low P had lower leaf water potentials and transpiration rates, and greater diurnal fluctuations in leaf water potential. Hydraulic conductances of excised root systems and of intact transpiring plants were determined from curves relating water flow rate per unit root length to the pressure differential across the roots. Both techniques showed that low P significantly decreased root hydraulic conductance. The effects of P nutrition on hydraulic conductance preceded effects on leaf area. Differences in total root length, shoot dry weight, and root dry weight all occurred well after the onset of differences in leaf expansion. The data strongly indicate that low P limits leaf expansion by decreasing the hydraulic conductance of the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号