首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Despite considerable advances in diagnosis and management over the last three decades, acute myocardial infarction continues to be a major public health problem. It is predicted that ischemic heart diseases will constitute the major disease-burden worldwide in the year 2020. In the present study, an attempt has been made to examine the effects of dietary chitosan supplementation on lipid peroxidation and cardiac antioxidant defense system in isoprenaline-induced myocardial infarction in rats, an animal model of myocardial infarction in man. Dietary chitosan intake significantly attenuated the isoprenaline-induced lipid peroxidation and maintained the level of reduced glutathione at near normal. Its administration demonstrated an antioxidant effect by maintaining the activities of myocardial glutathione dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) at levels comparable to that of controls. The results of the present study indicate that the salubrious effects of dietary supplementation of chitosan is probably related to a counteraction of free radicals and/or to normal maintenance of the activities of free radical enzymes and the level of GSH, which protect myocardial membrane against oxidative damage by decreasing lipid peroxidation.  相似文献   

2.
Increased oxidative stress and antioxidant deficit have been suggested to play a major role in isoproterenol-induced myocardial infarction. The present study was designed to evaluate the effect of alpha-mangostin on the antioxidant defense system and lipid peroxidation against isoproterenol-induced myocardial infarction in rats. Induction of rats with ISO (150 mg/kg body weight, ip) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT) and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GST, and GSH). Pre-treatment with alpha-mangostin (200 mg/kg of body weight per day) orally for 6 days prior to the ISO administration and 2 days along with ISO administration significantly attenuated these changes when compared to the individual treatment groups. These findings indicate the protective effect of alpha-mangostin on lipid peroxidation and antioxidant tissue defense system during ISO-induced myocardial infarction in rats.  相似文献   

3.
Antioxidants are free radical scavengers and protect living organisms against oxidative damage to tissues. Experimental evidence implicates oxygen-derived free radicals as important causative agents of aging and the present study was designed to evaluate the age-related effects of deprenyl on the antioxidant defense in the cerebellum of male Wistar rats. Experimental rats of three age groups (6, 12, and 18 months old) were administered with liquid deprenyl (2 mg/kg body weight/day for a period of 15 days i.p) and levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) in plasma, lipid peroxides, reduced glutathione and activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the cerebellar tissue were determined. Intraperitonial administration of deprenyl (2 mg/kg body weight/day for a period of 15 days) significantly (p < 0.05) attenuated the age-related alterations noted in the levels of diagnostic marker enzymes plasma of experimental animals. Deprenyl also exerted an antioxidant effect against aging process by hindering lipid peroxidation to an extent. Moderate rise in the levels of reduced glutathione and activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. The results of the present investigation indicated that the protective potential of deprenyl was probably due to the increase of the activity of the free radical scavenging enzymes or to a counteraction of free radicals by its antioxidant nature or to a strengthening of neuronal membrane by its membrane-stabilizing action. Histopathological observations also confirmed the protective effect of deprenyl against the age-related aberrations in rat cerebellum. These data on the effect of deprenyl on parameters of normal aging provides new additional information concerning the anti-aging potential of deprenyl.  相似文献   

4.
The protective effect of PUFA concentrate prepared from fish oil on isoproterenol-induced myocardial infarction in male albino rats was investigated with respect to changes in the levels of diagnostic marker enzymes, cholesterol, triglycerides, free fatty acids, phospholipids, reduced glutathione (GSH) and lipid peroxides (LPO). Administration of PUFA concentrate significantly prevented the isoproterenol-induced elevation in the levels of plasma diagnostic marker enzymes (ALT [93.5%], AST [95.6%], LDH [94.7%] and CPK [96.1%]). PUFA concentrate feeding exerted a significant antilipidemic effect against isoproterenol-induced myocardial infarction by reducing the levels of lipid components in plasma (cholesterol [71.5%], triglycerides [79.7%] and free fatty acids [70.7%] and heart tissue (cholesterol [81.4%], triglycerides [76.3%] and free fatty acids [78.6%]). A tendency to prevent the isoproterenol-induced phospholipids depletion (74.4%) in the myocardium of experimental rats was also observed. The level of lipid peroxidation was also found to be significantly lower in PUFA treated animals (2.72+/-0.15nmol/ml in plasma; 1.18+/-0.08nmol/mg protein in heart tissue) as compared to that of isoproterenol-injected groups (5.77+/-0.43nmol/ml in plasma; 2.14+/-0.15nmol/mg protein in heart tissue) of rats. Also the level of reduced GSH significantly higher in the heart tissue of PUFA administered experimental rats (5.65+/-0.98 microg/g) as compared to myocardial infarction induced control rats (2.39+/-0.18 microg/g). The results of the present study indicate that the overall cardioprotective effect of PUFA concentrate is probably related to its ability to inhibit lipid accumulation by its hypolipidaemic property.  相似文献   

5.
The present study examined the changes occurring in the pro phenoloxidase system and antioxidant defence status in haemolymph, hepatopancreas and muscle tissue of white spot syndrome virus (WSSV) infected Penaeus monodon. Tiger shrimps (P. monodon) were infected with white spot virus by intramuscular injection of the virus inoculum. Levels of lipid peroxides and the activities of phenoloxidase, glutathione-dependent antioxidant enzymes [glutathione peroxidase (GPX), glutathione-S-transferase (GST)] and antiperoxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)] were determined. WSSV infection induced a significant increase in lipid peroxidation in haemolymph, muscle and hepatopancreas of experimental P. monodon compared to normal controls. This was paralleled by significant reduction in the activities of phenol oxidase, glutathione-dependent antioxidant enzymes and antiperoxidative enzymes. The results of the present study indicate that the tissue antioxidant defence system in WSSV infected P. monodon is operating at a lower rate, which ultimately resulted in the failure of counteraction of free radicals, leading to oxidative stress as evidenced by the increased level of lipid peroxidation.  相似文献   

6.
The present study was conducted to elucidate the antioxidant role of an ayurvedic formulation Abana in isoproterenol induced myocardial infarction in rats. In myocardial necrosis induced by isoproterenol, a significant increase in serum iron content with a significant decrease in plasma iron binding capacity, ceruloplasmin activity and glutathione level were observed. There was also a significant increase in lipid peroxides levels on isoproterenol administration. Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase, glutathione reductase were decreased significantly in heart with isoproterenol-induced myocardial necrosis. Abana, produced a marked reversal of these metabolic changes related to myocardial infarction induced by isoproterenol. In conclusion ayurvedic formulation Abana exerts its effect by modulating lipid peroxidation and enhancing antioxidant and detoxifying enzyme systems.  相似文献   

7.
This study was designed to evaluate the anti-inflammatory and anti-apoptotic effects of the alcoholic extract of the berries of Crataegus oxyacantha (AEC), a medicinal herb, on isoproterenol-induced myocardial infarction (MI) in a rat model. Three groups of Wistar albino rats, each comprising six animals, were selected for this study. Group I rats served as control. Group II rats were given isoproterenol (85 mg/kg body weight) subcutaneously on 59th and 60th days. Group III rats were given AEC (0.5 ml/100 g body weight/day), orally on a daily basis for 60 days, and isoproterenol (85 mg/kg body weight, subcutaneously) was given on 59th and 60th days. On the 61st day, the animals were sacrificed, and marker enzymes like lactate dehydrogenase (LDH) and creatine kinase (CK) were estimated in serum. In the heart tissue sample, antioxidant status, lipid peroxidation and anti-inflammatory properties of AEC were determined. Isoproterenol significantly increased the release of LDH, CK in serum, decreased the antioxidant status in the heart along with an increase in lipid peroxidation. Nitritive stress and apoptosis were seen in isoproterenol-induced rat heart. Pre-treatment with the AEC for 60 days had a significant effect on all the above factors and maintained near normal status. The study confirms the protective effect of AEC against isoproterenol-induced inflammation and apoptosis-associated MI in rats.  相似文献   

8.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

9.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

10.
This study was undertaken to investigate the effect of exercise training on aging in the hepatic oxidative status and antioxidant defense of female albino rat. Two age groups of 3 months and 12 months old Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. The antioxidant enzyme assays were carried out by the standard methods. Lower (P<0.01) activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) by 21%, 44% and 63% respectively was observed in the older rats when compared to younger rats. Also, glutathione (GSH) levels were 42% lower (P<0.01) in older than younger animals. Exercise training to the 12 months aged rats significantly (P<0.01) elevated these antioxidant enzyme activities and GSH content, when compared to older control rats. These levels are almost equal to the values observed in the younger control rats. The levels of lipid peroxidation end product, malondialdehyde (MDA) the major indicator of oxidative stress, was found to increase with age (11%) and exercise training caused further elevation (28% of control). The present findings imply that the reactive oxygen species that are generated due to aging process were detoxified by the exercise induced antioxidant system in the liver tissue. These findings are also in agreement with similar changes in male animals, which clearly envisage no gender difference in the amelioration of the antioxidant enzyme system in older age due to exercise. In conclusion, it can be stated that twelve weeks treadmill exercise training has beneficial effect in improving antioxidant defense capacity by augmenting SOD, CAT and GR activities and GSH levels of older rats, thereby preventing oxidative damage to the liver tissue.  相似文献   

11.
The present study was aimed to evaluate the protective effects of N-acetyl cysteine (NAC) on changes in the activities/levels of adenosine triphosphatases and minerals in isoproterenol-induced myocardial-infarcted rats. Male albino Wistar rats were pretreated with NAC (10 mg/kg body weight) daily for a period of 14 days. After pretreatment period, rats were induced myocardial infarction (MI) by isoproterenol (100 mg/kg body weight). The activity of sodium/potassium-dependent adenosine triphosphatase was decreased, and the activities of calcium- and magnesium-dependent adenosine triphosphatases were increased in the heart of isoproterenol-induced myocardial-infarcted rats. Furthermore, the levels of potassium were lowered and the levels of sodium and calcium were increased in the heart of isoproterenol-induced rats. Increased plasma lipid peroxidation was observed in isoproterenol-induced rats. Pretreatment with NAC showed protective effects on adenosine triphosphatases, minerals, and lipid peroxidation. The in vitro study confirmed the reducing property of NAC. The observed effects are due to the membrane-stabilizing and antioxidant effects of NAC. The results of this study will be useful for the prevention of MI.  相似文献   

12.
Studies on the lipid peroxidation and antioxidant changes and their significance during myocardial injury have provided a new insight into the pathogenesis of heart disease. The heart failure subsequent to myocardial infarction may be associated with an antioxidant deficit as well as increased myocardial oxidative stress. The present study was designed to evaluate the effect of the combination of ferulic acid and ascorbic acid on antioxidant defense system and lipid peroxidation against isoproterenol (ISO)-induced myocardial infarction in rats. Induction of rats with isoproterenol (150 mg/kg body weight daily, i.p.) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT), and a significant decrease in activities of endogenous antioxidants (SOD, GPx, GST, CAT, and GSH). Pre-co-treatment with the combination of ferulic acid (20 mg/kg body weight/day) and ascorbic acid (80 mg/kg body weight/day) orally for 6 days, significantly attenuated these changes when compared to the individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. Thus, ferulic acid and ascorbic acid significantly counteracted the pronounced oxidative stress effect of ISO by the inhibition of lipid peroxidation, restoration of antioxidant status, and myocardial marker enzymes levels. In conclusion, these findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on lipid peroxidation and antioxidant defense system during ISO-induced myocardial infarction and associated oxidative stress in rats.  相似文献   

13.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

14.
We investigated the antioxidant preventive effect of betaine on isoprenaline-induced myocardial infarction in male albino rats. Isoprenaline induced myocardial infarction was manifested by a moderate elevation in the levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) and homocysteine in plasma of experimental rats. Significant rise in the level of lipid peroxidation with a concomitant decline in the levels of myocardial non-enzymic (reduced glutathione) and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase and superoxide dismutase) was also observed. Oral pretreatment with betaine significantly prevented isoprenaline-induced alterations in the levels of diagnostic marker enzymes and homocysteine in plasma of experimental groups of rats. It counteracted the isoprenaline-induced lipid peroxidation and maintained the myocardial antioxidant defense system at near normal. Histopathological observations also confirmed the protective effect of betaine against isoprenaline-induced myocardial infarction. The results of the present investigation indicate that the protective effect of betaine is probably related to its ability to strengthen the myocardial membrane by its membrane stabilizing action or to a counteraction of free radicals by its antioxidant property.  相似文献   

15.
16.
The cardioprotective potential of Inula racemosa root hydroalcoholic extract against isoproterenol-induced myocardial infarction was investigated in rats. The rats treated with isoproterenol (85 mg/kg, s.c.) exhibited myocardial infarction, as evidenced by significant (P < 0.05) decrease in mean arterial pressure, heart rate, contractility, relaxation along with increased left ventricular end diastolic pressure, as well as decreased endogenous myocardial enzymatic and non-enzymatic antioxidants. Isoproterenol also significantly (P < 0.05) induced lipid peroxidation and increased leakage of myocyte injury marker enzymes. Pretreatment with I. racemosa extract (50, 100 or 200 mg/kg per day, p.o.) for 21 consecutive days, followed by isoproterenol injections on days 19th and 20th significantly (P < 0.05) improved cardiac function by increasing the heart rate, mean arterial pressure, contractility and relaxation along with decreasing left ventricular end diastolic pressure. Pretreatment with I. racemosa also significantly (P < 0.05) restored the reduced form of glutathione and endogenous antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase from the heart, which were depleted after isoproterenol administration. In addition to restoration of antioxidants, I. racemosa significantly (P < 0.05) inhibited lipid peroxidation and prevented the leakage of myocytes specific marker enzymes creatine phosphokinase-MB and lactate dehydrogenase from the heart. Thus, it is concluded that I. racemosa protects heart from isoproterenol-induced myocardial injury by reducing oxidative stress and modulating hemodynamic and ventricular functions of the heart. Present study findings demonstrate the cardioprotective effect of I. racemosa and support the pharmacological relevance of its use and cardioprotection mechanism in ischemic heart disease as well as substantiate its traditional claim.  相似文献   

17.
The effect of aqueous extract of the flowers of Cassia auriculata were examined on antioxidants and lipid peroxidation in the brain of streptozotocin diabetic rats. Significant increase in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione were observed in brain on treatment with Cassia auriculata flower extract (CFEt) and glibenclamide. Both the treated groups showed significant decrease in thiobarbituric reactive substances (TBARS) and hydroperoxide formation in brain, suggesting its role in protection against lipid peroxidation induced membrane damage. Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of medicinal plant, these findings are suggestions of possible antiperoxidative role played by Cassia auriculata flower extract.  相似文献   

18.
The present study was designed to evaluate the protective effect of ursolic acid (UA) against isoproterenol-induced myocardial infarction. Myocardial infarction was induced by subcutaneous injection of isoproterenol hydrochloride (ISO) (85 mg/kg BW), for two consecutive days. ISO-induced rats showed elevated levels of cardiac troponins T (cTn T) and I (cTn I) and increased activity of creatine kinase-MB (CK-MB) in serum. Lipid peroxidative markers (thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (HP)) elevated in the plasma and heart tissue whereas decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR)) in erythrocytes and heart tissue of ISO-induced rats. Non-enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione (GSH)) levels were decreased significantly in the plasma and heart tissue of ISO-induced rats. Furthermore, ISO-induced rats showed increased DNA fragmentation, upregulations of myocardial pro-apoptotic B-cell lymphoma-2 associated-x (Bax), caspase-3, -8 and -9, cytochrome c, tumor necrosis factor-α (TNF-α), Fas and down-regulated expressions of anti-apoptotic B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL). UA-administered rats showed decreased levels/activity of cardiac markers, DNA fragmentation and the levels of lipid peroxidative markers in the plasma and heart tissue. Activities of enzymatic antioxidants were increased significantly in the erythrocytes and heart tissue and also non-enzymatic antioxidants levels were increased significantly in the plasma and heart tissue in UA-administered rats. UA influenced decreased DNA fragmentation and an apoptosis by upregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL and down-regulation of Bax, caspase-3, -8 and -9, cytochrome c, TNF-α, Fas through mitochondrial pathway. Histopathological observations were also found in line with biochemical parameters. Thus, results of the present study demonstrated that the UA has anti-apoptotic properties in ISO-induced rats.  相似文献   

19.
Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.  相似文献   

20.
In recent years, the role of endothelial dysfunction (ED) and excessive oxidative stress in the development of cardiovascular diseases has been highlighted. The aim of the present study is to evaluate the effect of diosgenin, an antioxidant on chronic renal failure (CRF) induced vascular dysfunction. CRF was induced by feeding the rats with a diet containing 0.75 % adenine and diosgenin was given orally (everyday at the dose of 40 mg/kg). Isometric force measurement was performed on isolated aortic rings in organ baths. Levels of reduced glutathione (GSH), nitric oxide metabolites, and endothelial nitric oxide synthase mRNA in rat aorta were examined. Further, plasma lipid profile, activity of enzymes of lipid metabolism, and aortic angiotensin converting enzyme (ACE) also studied. The overall results have proved that diosgenin attenuates CRF-induced impairment in acetylcholine induced endothelium-dependent and sodium nitroprusside induced endothelium-independent vascular relaxation. Moreover, it elevates the GSH and restores the eNOS mRNA expression level. CRF-induced dyslipidemia and ACE activity was also inhibited by diosgenin treatment. This study indicates that diosgenin have enough potential to protect vasculature against oxidative stress, dyslipidemia which in turn improves the vascular function in CRF milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号