首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gluA gene, encoding an endo-β-1,3-glucanase from Arthrobacter sp. (strain NHB-10), was cloned and analyzed. The deduced endo-β-1,3-glucanase amino acid sequence was 750 amino acids long and contained a 42 amino acid signal peptide with a mature protein of 708 amino acids. There was no similarity to known endo-β-1,3-glucanases, but GluA was partially similar to two fungal exo-β-1,3-glucanases in glycoside hydrolase (GH) family 55. Of five possible residues for catalysis and two motifs in two β-helix heads of GH family 55, three residues and one motif were conserved in GluA, suggesting that GluA is the first bacterial endo-β-1,3-glucanase in GH family 55. Significant similarity was also found to two proteins of unknown function from Streptomyces coelicolor A3(2) and S. avermitilis.  相似文献   

2.
Phylogenetic analysis of the endo--1,4-glucanase gene family of Arabidopsis and other plants revealed a clear distinction in three subfamilies (, , and ). The - and -subfamily contains proteins believed to be involved in a number of physiological roles such as elongation, ripening, and abscission. The -subfamily is composed of proteins that are predicted to have a membrane-spanning domain and to be localized at the plasma membrane. Some of these proteins have been linked to cellulose biosynthesis by serving to hydrolyze a lipid-linked intermediate that acts as a primer for the elongation of -glucan chains during cellulose synthesis at the plasma membrane. Similar glucanases are important in cellulose biosynthesis in bacteria. Searches in the genomes of unrelated organisms that make cellulose, such as Ciona intestinalis and Dictyostelium discoideum, revealed the presence of membrane-linked endo--1,4-glucanases and it is suggested that these might also have a role in cellulose synthesis.  相似文献   

3.
Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean.  相似文献   

4.
Endo-β-1,4-glucanase (CaCel) from Antarctic springtail, Cryptopygus antarcticus, a cellulase with high activity at low temperature, shows potential industrial use. To obtain sufficient active cellulase for characterization, CaCel gene was expressed in Bombyx mori-baculovirus expression systems. Recombinant CaCel (rCaCel) has been expressed in Escherichia coli (Ec-CaCel) at temperatures below 10 °C, but the expression yield was low. Here, rCaCel with a silkworm secretion signal (Bm-CaCel) was successfully expressed and secreted into pupal hemolymph and purified to near 90 % purity by Ni-affinity chromatography. The yield and specific activity of rCaCel purified from B. mori were estimated at 31 mg/l and 43.2 U/mg, respectively, which is significantly higher than the CaCel yield obtained from E. coli (0.46 mg/l and 35.8 U/mg). The optimal pH and temperature for the rCaCels purified from E. coli and B. mori were 3.5 and 50 °C. Both rCaCels were active at a broad range of pH values and temperatures, and retained more than 30 % of their maximal activity at 0 °C. Oligosaccharide structural analysis revealed that Bm-CaCel contains elaborated N- and O-linked glycans, whereas Ec-CaCel contains putative O-linked glycans. Thermostability of Bm-CaCel from B. mori at 60 °C was higher than that from E. coli, probably due to glycosylation.  相似文献   

5.
Agaricus bisporus H 25 produced extracellular endo-1,3-β-glucanase when grown in a static culture at 25°C in a minimal synthetic medium supplemented with A. bisporus cell walls plus fructose. Endo-1,3-β-glucanase was purified 17.85-fold from 20-day-old culture filtrates by precipitation at 80% ammonium sulfate saturation, Sephadex G-75 gel filtration, and preparative PAGE followed by electroelution. The purified enzyme yielded a single band in both native and SDS-polyacrylamide gels with a molecular mass of 32 kDa (SDS-PAGE) and 33.7 kDa (MALDI-MS), showing an isoelectric point of 3.7. The enzyme was active against β-1,3- linkages and, to a lesser extent, against β-1,6-, exhibiting an endohydrolytic mode of action and a glycoprotein nature. Significant activities of the endo-glucanase against laminarin and pustulan were observed between pH 4 and 5.5, and between 40° and 50°C for laminarin, and between 30° and 50°C for pustulan. The optimum pH and temperature were 4.5 and 45°C for both substrates. Received: 17 June 1998 / Accepted: 24 September 1998  相似文献   

6.
7.
Clones encoding -1,3-glucanase have been isolated from a Hevea cDNA library prepared from the latex of Hevea brasiliensis using a probe Nicotiana plumbaginifolia cDNA encoding -1,3-glucanase, gnl. Nucleotide sequence analysis showed that a 1.2 kb Hevea cDNA encoding a basic -1,3-glucanase showed 68% nucleotide homology to gnl cDNA. Northern blot analysis using the Hevea cDNA as probe detected a mRNA of 1.3 kb which was expressed at higher levels in latex than in leaf. In situ hybridization analysis using petiole sections from Hevea localized the -1,3-glucanase mRNA to the laticifer cells. Genomic Southern analysis suggested the presence of a low-copy gene family encoding -1,3-glucanases in H. brasiliensis.  相似文献   

8.
Mycelial and yeast forms of P. brasiliensis were tested for several glucohydrolases. In addition to high levels of -blucanases, low amounts of -glucanase, chitinase and maltase were found. Tests for invertase, amylase and lactase were negative. The levels of -1,3-glucanase were higher in the mycelial form. The shift to the mycelial phase correlated with an increase in the levels of -1,3-glucanase. The enzyme was present in the cytoplasm, cell wall and culture medium. The extracellular enzyme was purified 42 fold by ammonium sulphate precipitation and gel filtration. Maximal activity was obtained at 60°C and pH of 5.0 acetate buffer or pH 6.0 (phosphate buffer). Its K m was 0.205 mg/ml. The cell wall-bound enzyme showed a higher temperature optimum. Optimum pH and K m were also slightly different. Following treatment of the cell walls with chitinase, -1,3-glucanase was released into the medium.  相似文献   

9.
Trichoderma species are readily isolated from Brazilian cerrado soil by conventional methods and some of them were characterized as Trichoderma koningii. The effect of carbon source on the production of β-1,3-glucanases in the culture filtrates of a specific Trichoderma koningii strain (ALL 13) was investigated. Enzyme activity was detected in all carbon sources tested and only one band of β-1,3-glucanase was detected in non-denaturing PAGE. This enzyme was purified by Sephacryl S-200 gel filtration and Phenyl Sepharose CL 4B chromatography. A typical procedure provided 105-fold purification with 13.4% yield. The molecular weight of the purified enzyme was 75 kDa as estimated by SDS-PAGE. The enzyme hydrolyzed laminarin in an endo-like fashion to form small oligosaccharides and glucose. The Km and Vmax values for β-1,3-glucanase, using laminarin as substrate, were 0.148 mg.mL−1 and 0.159 U.min−1, respectively. The pH optimum for the enzyme was pH 4.6 and maximum activity was obtained at 50°C. Hg2+ inhibited the purified enzyme.  相似文献   

10.
11.
The gene encoding β-N-acetylglucosaminidase (GlcNAcaseA) was cloned using PCR with degenerate oligonucleotide primers from the partial amino acid sequence of the enzyme. The gene encoded a polypeptide of 863 amino acids with a predicted molecular mass of 97 kDa. A characteristic signal peptide, which was present at the amino-terminus of the precursor protein, contained four amino acids (Ala-Gly-Cys-Ser) identical in sequence and location to the processing and modification sites of the outer membrane lipoprotein of Escherichia coli, indicating that the mature GlcNAcaseA is a lipoprotein the N-terminal cysteine residue of which would be modified by the fatty acid that anchors the protein in the membrane. The predicted amino acid sequence of GlcNAcaseA showed similarity to bacterial β-N-acetylglucosaminidases belonging to the family 20 glycosyl hydrolases.  相似文献   

12.
As the β-1, 3-glucanase produced by the marine-derived Williopsis saturnus WC91-2 could inhibit the activity of the killer toxin produced by the same yeast, the WsEXG1 gene encoding exo-β-1, 3-glucanase in W. saturnus WC91-2 was disrupted. The disruptant WC91-2-2 only produced a trace amount of β-1, 3-glucanase but had much higher activity of killer toxin than W. saturnus WC91-2. After the disruption of the WsEXG1 gene, the expression of the gene was significantly decreased from 100% in the cells of W. saturnus WC91-2 to 27% in the cells of the disruptant WC91-2-2 while the expression of the killer toxin gene in W. saturnus WC91-2 and the disruptant WC91-2-2 was almost the same. During 2-l fermentation, the disruptant WC91-2-2 could produce the highest amount of killer toxin (the size of the inhibition zone was 22 ± 0.7 mm) within 36 h when the cell growth reached the middle of the log phase.  相似文献   

13.
Tsai PW  Yang CY  Chang HT  Lan CY 《PloS one》2011,6(6):e21394
Candida albicans is the major fungal pathogen of humans. Its adhesion to host-cell surfaces is the first critical step during mucosal infection. Antimicrobial peptides play important roles in the first line of mucosal immunity against C. albicans infection. LL-37 is the only member of the human cathelicidin antimicrobial peptide family and is commonly expressed in various tissues, including epithelium. We previously showed that LL-37 significantly reduced C. albicans adhesion to plastic, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. The inhibitory effect of LL-37 on cell adhesion occurred via the binding of LL-37 to cell-wall carbohydrates. Here we showed that formation of LL-37-cell-wall protein complexes potentially inhibits C. albicans adhesion to polystyrene. Using phage display and ELISA, we identified 10 peptide sequences that could bind LL-37. A BLAST search revealed that four sequences in the major C. albicans cell-wall β-1,3-exoglucanase, Xog1p, were highly similar to the consensus sequence derived from the 10 biopanned peptides. One Xog1p-derived peptide, Xog1p(90-115), and recombinant Xog1p associated with LL-37, thereby reversing the inhibitory effect of LL-37 on C. albicans adhesion. LL-37 reduced Xog1p activity and thus interrupted cell-wall remodeling. Moreover, deletion of XOG1 or another β-1,3-exoglucanase-encoding gene EXG2 showed that only when XOG1 was deleted did cellular exoglucanase activity, cell adhesion and LL-37 binding decrease. Antibodies against Xog1p also decreased cell adhesion. These data reveal that Xog1p, originally identified from LL-37 binding, has a role in C. albicans adhesion to polystyrene and, by inference, attach to host cells via direct or indirect manners. Compounds that target Xog1p might find use as drugs that prevent C. albicans infection. Additionally, LL-37 could potentially be used to screen for other cell-wall components involved in fungal cell adhesion.  相似文献   

14.
15.
16.

Background

Incorporation of exogenous glucanase into animal feed is common practice to remove glucan, one of the anti-nutritional factors, for efficient nutrition absorption. The acidic endo-β-1,3-1,4-glucanase (Bgl7A) from Bispora sp. MEY-1 has excellent properties and represents a potential enzyme supplement to animal feed.

Methodology/Principal Findings

Here we successfully developed a transgenic maize producing a high level of Bgl7AM (codon modified Bgl7A) by constructing a recombinant vector driven by the embryo-specific promoter ZM-leg1A. Southern and Western blot analysis indicated the stable integration and specific expression of the transgene in maize seeds over four generations. The β-glucanase activity of the transgenic maize seeds reached up to 779,800 U/kg, about 236-fold higher than that of non-transgenic maize. The β-glucanase derived from the transgenic maize seeds had an optimal pH of 4.0 and was stable at pH 1.0–8.0, which is in agreement with the normal environment of digestive tract.

Conclusion/Significance

Our study offers a transgenic maize line that could be directly used in animal feed without any glucanase production, purification and supplementation, consequently simplifying the feed enzyme processing procedure.  相似文献   

17.
A gene (neg1) encoding an endo-1,6-β-D-glucanase from Neurospora crassa was cloned. The putative neg1 was 1443-bp long and encoded a mature endo-1,6-β-D-glucanase protein of 463 amino acids and signal peptide of 17 amino acids. The purified recombinant protein (Neg1) obtained from Escherichia coli showed 1,6-β-D-glucanase activity. No genes similar in sequence were found in yeasts and fungi.  相似文献   

18.
Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants.Plant cell walls provide a physical barrier that separates challenging pathogens from the internal contents of plant cells. Additionally, the cell walls regulate cell expansion and differentiation (York et al., 2004; Flors et al., 2007; Cantu et al., 2008). Polysaccharides, such as cellulose, hemicellulose, and pectic polysaccharides, are the main components of primary cell walls. Xyloglucan (XG), the most abundant hemicellulose in the primary cell wall, plays a structural role by forming strong hydrogen bonds with cellulose microfibrils (Carpita and Gibeaut, 1993). The primary structure of XG contains a common β-(1→4)-d-glucan backbone, which is repeatedly substituted with α(1→6)-d-xylopyranosyl residues. Depolymerization of XG is proposed to play an important role during both cell wall expansion and pathogen invasion (Bourquin et al., 2002; Qin et al., 2003; Baumann et al., 2007). During cell wall expansion, plant XG endotransglycosylases cut and rejoin XG chains to allow the cellulose microfibrils to move apart. From a pathogen point of view, the carbon-rich complex represents a useful energy source for pathogen growth. To facilitate penetration into the plant tissues and to catabolize carbon sources, many plant pathogens secrete a mixture of cell wall-degrading enzymes, such as polygalacturonases, pectin methyl esterases, pectin/pecatae lyases, xylanases, and endoglucanases (Valette-Collet et al., 2003; DeBoy et al., 2008). Some microbial glycoside hydrolase (GH) family proteins, including GH5, GH12, and GH74, reportedly hydrolyze plant-derived XG (Martinez-Fleites et al., 2006; Gloster et al., 2007).To inhibit pathogen-derived cell wall-degrading enzymes, plants secrete a mixture of inhibitor proteins into the cell wall (Qin et al., 2003; An et al., 2008; Xie et al., 2008). Some of the best characterized inhibitor proteins are polygalacturonase-inhibiting proteins (PGIPs; Albersheim and Anderson, 1971; De Lorenzo and Ferrari, 2002; Federici et al., 2006). In bean (Phaseolus vulgaris), two pairs of PGIPs, PvPGIP1/PvPGIP2 and PvPGIP3/PvPGIP4, are present in the genome. These genes may have originated from independent gene duplication events (D’Ovidio et al., 2004a). PvPGIP2 strongly inhibits polygalacturonases from Fusarium phyllophilum and Aspergillus niger via three conserved Asp residues (Spinelli et al., 2009). PGIPs reduce the hydrolytic activity of polygalacturonases to favor the accumulation of long-chain oligogalacturonides, known as elicitors of a variety of defense responses (Côté and Hahn, 1994; D’Ovidio et al., 2004b). Furthermore, transgenic expression of pear (Pyrus communis) PGIP in transgenic tomato (Solanum lycopersicum) plants limited fungal colonization, suggesting a role of PGIPs in plant defense (Powell et al., 2000).The proteinaceous inhibitor of the cell wall-degrading enzyme xyloglucan-specific endo-β-1,4-glucanase (XEG) was identified from suspension-cultured tomatoes (Qin et al., 2003). The purified xyloglucan-specific endo-β-1,4-glucanase inhibitor protein (XEGIP) strongly inhibited XEG activity through the formation of a 1:1 protein:protein complex with XEG of Aspergillus aculeatus. More recently, two putative XEGIPs were isolated from Nicotiana benthamiana based on conserved regions found in plant XEGIP genes, and these genes were functionally characterized using virus-induced gene silencing (VIGS; Xie et al., 2008). VIGS of NbXEGIP1 strongly enhanced the wilting symptoms exhibited following infection by virulent Pseudomonas syringae pv tabaci. This finding supports the notion that NbXEGIP1 may act as an inhibitor of bacterial cell wall-degrading enzymes in N. benthamiana plants.Programmed cell death (PCD) has been extensively characterized in plants (Lam, 2004). The hypersensitive response (HR), a well-known form of plant PCD, is one of the most efficient and immediate resistance reactions of plants. The HR is characterized by the rapid death of cells in the local region surrounding an infection site. As a result, the growth and spread of the pathogen is restricted or confined. During HR cell death development, cell wall strengthening occurs. Histochemical analyses of cells involved in melon (Cucumis melo)-powdery mildew (Podosphaera fusca) interactions demonstrate the reinforcement of the cell wall compartment as part of HR cell death-mediated resistance (Romero et al., 2008). Treatment of suspension-cultured tobacco (Nicotiana tabacum) cells with cryptogein, a 10-kD protein secreted by the oomycete Phytophthora cryptogea, induces a HR on tobacco leaves, accompanied by induced strengthening of the cell wall (Kieffer et al., 2000). However, the role of cell wall strengthening in HR cell death is poorly understood. A second type of PCD is thought to be associated with the differentiation of procambium into tracheary elements in the xylem of vascular plants (Fukuda, 2000; Lam, 2004). During the early formation of mature tracheary elements, vacuoles accumulate degradation enzymes and the cell wall is remodeled into a highly reticulated form. A similar phenomenon occurs during some plant developmental processes, including senescence and aerenchyma formation in roots (Jones, 2001).In this study, we have isolated and functionally characterized a pepper (Capsicum annuum) xyloglucan-specific endo-β-1,4-glucanase inhibitor-protein1 gene (CaXEGIP1). Expression of CaXEGIP1 was strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria (Xcv) strain Bv5-4a. The purified CaXEGIP1 protein inhibited the hydrolytic activity of GH74 family XEG from the thermophilic bacterium Clostridium thermocellum. The soluble-modified GFP (smGFP)-fused CaXEGIP1 protein was localized in the external and intercellular regions of onion epidermal cells. Importantly, Agrobacterium tumefaciens-mediated transient expression of CaXEGIP1 induced the hypersensitive cell death response in pepper and N. benthamiana leaves. VIGS of CaXEGIP1 significantly enhanced the growth of virulent and avirulent Xcv in pepper leaves, accompanied by compromised HR cell death and lowered expression of CaPR1 (pathogenesis-related protein1 [PR1]) and CaDEF1 (defensin [DEF1]). We also investigated the role of CaXEGIP1 in plant cell death and defense responses using transgenic Arabidopsis (Arabidopsis thaliana) plants harboring the dexamethasone (DEX)-inducible CaXEGIP1 transgene. Overexpression of CaXEGIP1 triggered spontaneous cell death and modification of the cell wall compartment in Arabidopsis plants. Together, these results suggest that the pathogen-responsive CaXEGIP1 is involved in plant cell death-mediated defense signaling.  相似文献   

19.
A putative endo-β-1,4-D-galactanase gene of Thermotoga maritima was cloned and overexpressed in Escherichia coli. The recombinant enzyme hydrolyzed pectic galactans and produced D-galactose, β-1,4-D-galactobiose, β-1,4-D-galactotriose, and β-1,4-D-galactotetraose. The enzyme displayed optimum activity at 90 °C and pH 7.0. It was slowly inactivated above pH 8.0 and below pH 5.0 and stable at temperatures up to 80 °C.  相似文献   

20.
This paper presents the characterization of nine alleles of myospheroid, which encodes the beta PS subunit of the Drosophila PS integrins. On Southern blots, the mysXB87, mysXN101 and mysXR04 genes yield restriction digest patterns similar to that seen for wild-type chromosomes, however the mys1 and mysXG43 genes contain detectable deletions. mys1, mysXB87 and mysXG43 make little or no stable protein product, and genetically behave as strong lethal alleles. For the mysXN101 mutation, protein product is seen on immunoblots and a reduced amount of beta PS protein is seen at muscle attachment sites of embryos; this mutant protein retains some wild-type function, as revealed by complementation tests with weak alleles. Protein is also seen on immunoblots from mysXR04 embryos, and this allele behaves as an antimorph, being more deleterious in some crosses than the complete deficiency for the locus. mysts2 and mysnj42 are typically lethal in various combinations with other alleles at high temperatures only, but even at high physiological temperatures, neither appears to eliminate gene function completely. The complementation behaviors of mysts1 and mysts3 are quite unusual and suggest that these mutations involve regulatory phenomena. For mysts3, the data are most easily explained by postulating transvection effects at the locus. The results for mysts1 are less straightforward, but point to the possibility of a chromosome pairing-dependent negative interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号