首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2.
3.
4.
Variation in leaves and petals was studied using canonical variate and cluster analyseS. In total of 33 populations from eight islands leaf variation in laminar, floating leaves was studied in Ranunculus peltatus subsp. peltatus, subsp. baudotii and subsp. saniculifolius, and in R. Tripartitus, all of which are heterophyllous in the Aegean area. The petal data set also included the homophyllous R. Trichophyllus. The results of the analyses show that the populations are morphologically well differentiated and that petal shape has a tendency to discriminate between the populations somewhat better than leaf shape does. There was no basis for subdividing the populations into taxa on these characterS. Analyses showed that up to 70% of the variation was distributed between populations, the remainder (5–18%) being within populations.  相似文献   

5.
The mature wild type petals of Clarkia tembloriensis consist of a long slender claw and an expanded deltoid-shaped limb. They are pink, with a maroon spot at the base of the limb. Their surface texture is smooth. A variant of petal form, crinkled petal, occurs commonly in several natural populations of C. tembloriensis. The mature crinkled petals are elongated, greenish pink, and possess trichomes. They resemble the mature sepals of C. tembloriensis in general shape, color, and surface texture. Organ initiation and subsequent patterns of development of wild type petals, wild type sepals, and crinkled petals were examined and compared using scanning electron microscopy and allometric growth analysis. Crinkled petals are similar to wild type petals in time and position of primordia initiation, and in size and shape at inception. Crinkled petals are similar to wild type sepals in pattern of allometric growth. The crinkled petal mutant fits the broad definition of a homeotic mutant in that the petal has assumed characteristics of the sepal.  相似文献   

6.
Aim This study intends to improve our understanding of historical biogeography of olive domestication in the Mediterranean Basin, particularly in the north-western area. Location Investigations were performed simultaneously on olive stones from extant wild populations, extant cultivated varieties from various Mediterranean countries, and archaeological assemblages of Spanish, French and Italian settlements. Methods A combination of morphometrics (traditional and geometrical) allowed us to study both the size and shape of endocarp structure. Concerning shape, a size-standardized method coupled with fitted polynomial regression analysis was performed. Results We found morphological criteria for discriminating between wild and cultivated olive cultivars, and established patterns of morphological variation of olive material according to the geographical origin (for extant material) and to the age of the olive forms (for archaeological material). Levels of morphological convergences and divergences between wild olive populations and cultivated varieties are presented as evidence. Main conclusions Morphological changes of endocarps of olive under domestication at both geographical and chronological scales provide new criteria for the identification of olive cultivars. They allow to determine the origins of cultivated forms created and/or introduced in the north-western Mediterranean regions and to understand how human migrations affected the rest of the Western Mediterranean regions. A model of diffusion of olive cultivation is proposed. It shows evidence of an indigenous origin of the domestication process, which is currently recognized in the north-western area since the Bronze Age.  相似文献   

7.
Petal Development in Lotus japonicus   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that petal shape and size in legume flowers are determined by two separate mechanisms, dorsoventral (DV) and organ internal (IN) asymmetric mechanisms, respectively. However, little is known about the molecular mechanisms controlling petal development in legumes. To address this question, we investigated petal development along the floral DV axis in Lotus japonicus with respect to cell and developmental biology by comparing wild‐type legumes to mutants. Based on morphological markers, the entire course of petal development, from initiation to maturity, was grouped to define 3 phases or 13 stages. In terms of epidermal micromorphology from adaxial surface, mature petals were divided into several distinct domains, and characteristic epidermal cells of each petal differentiated at stage 9, while epidermal cells of all domains were observed until stage 12. TCP and MIXTA‐like genes were found to be differentially expressed in various domains of petals at stages 9 and 12. Our results suggest that DV and IN mechanisms interplay at different stages of petal development, and their interaction at the cellular and molecular level guides the elaboration of domains within petals to achieve their ideal shape, and further suggest that TCP genes determine petal identity along the DV axis by regulating MIXTA‐like gene expression.  相似文献   

8.
以小苍兰(Freesia refracta)16个不同花色品种及后代为试验材料,对花瓣色素用特征显色反应和紫外-可见光谱扫描,分析其色素的成分和花色素苷的稳定性.结果表明,小苍兰花色的色素属于类黄酮化合物,含黄酮和花色素苷类物质,可能含有异黄酮,不含黄酮醇、二氢黄酮、二氢黄酮醇、查耳酮和橙酮,其中黄色系品种及后代还含有类胡萝卜素.避光下小苍兰花色素苷的稳定性要强于光照;温度对花瓣色素的稳定性有一定的影响.  相似文献   

9.
10.
Morphological variation was analyzed in wild accessions and cultivars of the vegetatively propagated dioecious Coccinia grandis. Variations of 43 morphological characters, 19 qualitative and 23 quantitative traits, were analyzed among 40 female accessions, including 25 cultivars and 15 wild accessions. Multivariate statistical analyses were used to group accessions according to their morphological similarity. Principal component (PC) analysis revealed that the first three PCs accounted for 50% of the total variance, and differences among the accessions were evidenced principally in relation to fruit characteristics such as fruit weight, fruit length and the number of seeds in each fruit. Analysis of variance carried out in the entire germplasm revealed significant differences within the germplasm, whereas ANOVA carried out between the wild accessions and the cultivars proved the null hypothesis that there are no significant differences between the two groups, and differences were observed only in fruit characters that are targets of human selection. Principal component analysis, UPGMA cluster analysis and discriminant factor analysis revealed strong overlaps between the two groups indicating the ongoing process of evolution and selection in the species.  相似文献   

11.
Correlated variation in shape and size (allometry) is a major component of natural diversity. We examined the evolutionary and genetic basis for allometry using leaves and flower petals of snapdragon species (Antirrhinum). A computational method was developed to capture shape and size variation in both types of organ within the Antirrhinum species group. The results show that the major component of variation between species involves positively correlated changes in leaf and petal size. The correlation was maintained in an F2 population derived from crossing two species with organs of different sizes, suggesting that developmental constraints were involved. Identification of the underlying genes as quantitative trait loci revealed that the larger species carried alleles that increased organ size at all loci. Although this was initially taken as evidence that directional selection has driven diversity in both leaf and petal size, simulations revealed that evolution without consistent directional selection, an undirected walk, could also account for the parental distribution of organ size alleles.  相似文献   

12.
Summary Allozyme surveys of cultivated plant species generally report little within-cultivar variation, but considerable among-cultivar variation. This trend contrasts with natural plant populations in which most allozyme variation resides within, rather than among, populations. The difference may be an artifact of the extreme inbreeding techniques used to develop and propagate these crops, rather than a consequence of domestication per se. To test this hypothesis, we compared the population genetic structure of 24 lines of radish cultivars — a domesticated species developed and maintained as open-pollinated, outcrossed populations — with four wild radish populations in California. Although the wild populations displayed more overall allozyme variation than the cultivars, most of the allozyme variation in the cultivars remains partitioned within, rather than among, lines. Apparently, how a crop is developed and maintained can have a profound influence on the organization of genetic variation of that species.  相似文献   

13.
14.
BACKGROUND AND AIMS: Olive cultivars and their wild relatives (oleasters) represent two botanical varieties of Olea europaea subsp. europaea (respectively europaea and sylvestris). Olive cultivars have undergone human selection and their area of diffusion overlaps that of oleasters. Populations of genuine wild olives seem restricted to isolated areas of Mediterranean forests, while most other wild-looking forms of olive may include feral forms that escaped cultivation. METHODS: The genetic structure of wild and cultivated olive tree populations was evaluated by amplified fragment length polymorphism (AFLP) markers at a microscale level in one continental and two insular Italian regions. KEY RESULTS: The observed patterns of genetic variation were able to distinguish wild from cultivated populations and continental from insular regions. Island oleasters were highly similar to each other and were clearly distinguishable from those of continental regions. Ancient cultivated material from one island clustered with the wild plants, while the old plants from the continental region clustered with the cultivated group. CONCLUSIONS: On the basis of these results, we can assume that olive trees have undergone a different selection/domestication process in the insular and mainland regions. The degree of differentiation between oleasters and cultivated trees on the islands suggests that all cultivars have been introduced into these regions from the outside, while the Umbrian cultivars have originated either by selection from local oleasters or by direct introduction from other regions.  相似文献   

15.
The Puzzle of Rice Domestication   总被引:16,自引:0,他引:16  
The origin of cultivated rice has puzzled plant biologists for decades. This is due, at least in part, to the complex evolutionary dynamics in rice cultivars and wild progenitors, particularly rapid adaptive differentiation and continuous gene flow within and between cultivated and wild rice. The long-standing controversy over single versus multiple and annual versus perennial origins of cultivated rice has been brought into shaper focus with the rapid accumulation of genetic and phylogenetic data. Molecular phylogenetic analyses revealed ancient genomic differentiation between rice cultivars, suggesting that they were domesticated from divergent wild populations. However, the recently cloned domestication gene sh4, responsible for the reduction of grain shattering from wild to cultivated rice, seems to have originated only once. Herein, we propose two models to reconcile apparently conflicting evidence regarding rice domestication. The snowoballing model considers a single origin of cultivated rice. In this model, a core of critical domestication alleles was fixed in the founding cultivar and then acted to increase the genetic diversity of cultivars through hybridization with wild populations. The combination model considers multiple origins of cultivated rice. In this model, Initial cultivars were domesticated from divergent wild populations and fixed different sets of domestication alleles. Subsequent crosses among these semi-domesticated cultivars resulted in the fixation of a similar set of critical domestication alleles in the contemporary cultivars. In both models, introgression has played an important role in rice domestication. Recent and future introgression of beneficial genes from the wild gene pool through conventional and molecular breeding programs can be viewed as the continuation of domestication.  相似文献   

16.
In addition to contributing to the coloration of plant organs and their defense against herbivores, the consumption of anthocyanins in the human diet has a number of health benefits. Crabapple (Malus sp.) represents a valuable experimental model system to research the mechanisms and regulation of anthocyanin accumulation, in part due to the often vivid and varied petal and leaf coloration that is exhibited by various cultivars. The enzyme anthocyanidin synthase (ANS) plays a pivotal role in anthocyanin biosynthesis; however, the relationship between ANS expression and petal pigmentation has yet to be established in crabapple. To illuminate the mechanism of anthocyanin accumulation in crabapple petals, we evaluated the expression of two crabapple ANS allelic genes (McANS-1 and McANS-2) and the levels of anthocyanins in petals from cultivars with dark red (‘Royalty’) and white (‘Flame’) petals, as well as another (‘Radiant’) whose petals have an intermediate pink color. We determined that the expression of McANS in the three cultivars correlated with the variation of anthocyanin accumulation during different petal developmental stages. Furthermore, transgenic tobacco plants constitutively overexpressing one of the two McANS genes, McANS-1, had showed elevated anthocyanin accumulation and a deeper red coloration in their petals than those from untransformed control lines. In conclusion, we propose that McANS are responsible for anthocyanin accumulation during petal coloration in different crabapple cultivars.  相似文献   

17.

Background

Roses have been cultivated for centuries and a number of varieties have been selected based on flower traits such as petal form, color, and number. Wild-type roses have five petals (simple flowers), whereas high numbers of petals (double flowers) are typical attributes of most of the cultivated roses. Here, we investigated the molecular mechanisms that could have been selected to control petal number in roses.

Methodology/Principal Findings

We have analyzed the expression of several candidate genes known to be involved in floral organ identity determination in roses from similar genetic backgrounds but exhibiting contrasting petal numbers per flower. We show that the rose ortholog of AGAMOUS (RhAG) is differentially expressed in double flowers as compared to simple flowers. In situ hybridization experiments confirm the differential expression of RhAG and demonstrate that in the double-flower roses, the expression domain of RhAG is restricted toward the center of the flower. Conversely, in simple-flower roses, RhAG expression domain is wider. We further show that the border of RhAG expression domain is labile, which allows the selection of rose flowers with increased petal number. Double-flower roses were selected independently in the two major regions for domestication, China and the peri-Mediterranean areas. Comparison of RhAG expression in the wild-type ancestors of cultivated roses and their descendants both in the European and Chinese lineages corroborates the correlation between the degree of restriction of RhAG expression domain and the number of petals. Our data suggests that a restriction of RhAG expression domain is the basis for selection of double flowers in both the Chinese and peri-Mediterranean centers of domestication.

Conclusions/Significance

We demonstrate that a shift in RhAG expression domain boundary occurred in rose hybrids, causing double-flower phenotype. This molecular event was selected independently during rose domestication in Europe/Middle East and in China.  相似文献   

18.
Domestication occurs as humans select and cultivate wild plants in agricultural habitats. The amount and structure of variation in contemporary cultivated populations has been shaped, in part, by how genetic material was transferred from one cultivated generation to the next. In some cultivated tree species, domestication involved a shift from sexually reproducing wild populations to vegetatively propagated cultivated populations; however, little is known about how domestication has impacted variation in these species. We employed AFLP data to explore the amount, structure, and distribution of variation in clonally propagated domesticated populations and sexually reproducing wild populations of the Neotropical fruit tree, Spondias purpurea (Anacardiaceae). Cultivated populations from three different agricultural habitats were included: living fences, backyards, and orchards. AFLP data were analysed using measures of genetic diversity (% polymorphic loci, Shannon's diversity index, Nei's gene diversity, panmictic heterozygosity), population structure (F(ST) analogues), and principal components analyses. Levels of genetic variation in cultivated S. purpurea populations are significantly less than variation found in wild populations, although the amount of diversity varies in different agricultural habitats. Cultivated populations have a greater proportion of their genetic variability distributed among populations than wild populations. The genetic structure of backyard populations resembles that of wild populations, but living fence and orchard populations have 1/3 more variability distributed among populations, most likely a reflection of relative levels of vegetative reproduction. Finally, these results suggest that S. purpurea was domesticated in two distinct regions within Mesoamerica.  相似文献   

19.
Sanguinaria canadensis is a member of the Papaveraceae that normally has eight petals rather than four as is usual in the family. Using epi-illumination microscopy to study floral development, we show that the four additional petal primordia are initiated in positions that correspond to the first four stamen positions in species of the Papaveraceae with four petals. Also, these additional petal primordia share early developmental features with stamen primordia: at inception they are circular in outline, and the relationship between organ length and width while very young is similar. The developmental pathway of the additional petals combines both stamen and petal features: initially stamenlike in appearance, they develop into typical petals. The additional petals of S. canadensis can therefore be interpreted as homeotic because petal features are expressed in stamen positions. Organogenesis in the ‘Multiplex’ cultivar is similar to that of its wild progenitor, but during development all primordia in the androecial region become petals. This cultivar, as well as variants within natural populations, show that replacement of stamens with petals occurs within the species.  相似文献   

20.
Genetics and phylogenetics of rice domestication   总被引:3,自引:0,他引:3  
With genetically divergent cultivars and ecologically distinct wild progenitors, rice has posed a great challenge to the genetic and phylogenetic studies of the origin and evolution of crop species. A growing body of phylogenetic evidence suggested that the diverged genomic backgrounds of indica and japonica rice cultivars were derived independently from genetically distinct wild populations. However, a domestication gene, sh4, which was responsible for the reduction of grain shattering, seems to have originated only once, and it is now fixed in both cultivars. Two models have been proposed to reconcile these data. Whereas the 'combination model' emphasizes the importance of early introgression between independently domesticated cultivars, the 'snowballing model' emphasizes the importance of introgression from local populations of wild species into an ancestral domesticated population. In either case, the domestication of rice was a dynamic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号