首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.  相似文献   

2.
Andrenomedullin and cardiovascular responses in sepsis.   总被引:10,自引:0,他引:10  
P Wang 《Peptides》2001,22(11):1835-1840
The typical cardiovascular response to polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late, hypodynamic phase. Although the factors and/or mediators responsible for producing the transition from the hyperdynamic to the hypodynamic stage are not fully understood, recent studies have suggested that adrenomedullin (AM), a potent vasodilatory peptide, appears to play an important role in initiating the hyperdynamic response following the onset of sepsis. In addition, the reduced vascular responsiveness to AM may result in the transition from the early, hyperdynamic phase to the late, hypodynamic phase of sepsis. It is possible that changes in newly reported AM receptors calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-2 or -3 (RAMP2, RAMP3) as well as AM binding protein-1 (AMBP-1) may also play distinct roles in the biphasic cardiovascular response observed during sepsis. Although it remains unknown whether AM gene delivery or a chronic increase in vascular AM production in transgenic animals attenuates the development of hypodynamic sepsis and septic shock, it has been shown that modulation of AM vascular responsiveness with pharmacologic agents reduces sepsis-induced mortality. It has been recently demonstrated that AMBP-1 enhances AM's physiologic effects and plasma levels of AMBP-1 decrease following infections. We therefore propose that downregulation of AMBP-1 and the reduced AM receptor responsiveness are crucial factors responsible for the transition from the hyperdynamic phase to the hypodynamic phase of sepsis.  相似文献   

3.

Background

Brain ischemia is the underlying cause of neuron death during stroke and brain trauma. Neural cells exposed to ischemia can undergo apoptosis. Adrenomedullin (AM) in combination with its enhancing binding protein, AMBP-1, has been shown to reduce tissue damage in inflammation.

Methods

To evaluate a beneficial effect of AM/AMBP-1 administration in brain ischemia, we employed an in vitro model of neuronal hypoxia using differentiated human neuroblastoma SH-SY5Y cells.

Results

After exposure to 1% O2 for 20 h, neural cells were injured with decreased ATP levels and increased LDH release. Pre-administration of AM/AMBP-1 significantly reduced hypoxia-induced cell injury. Moreover, AM/AMBP-1 treatment reduced the number of TUNEL-positive cells and activation of caspase-3, compared to cells exposed to hypoxia alone. AM/AMBP-1 prevented a reduction of cAMP levels and protein kinase A (PKA) activity in neural cells after hypoxia exposure. Correspondingly, an elevation of cAMP levels by forskolin protected neural cells from hypoxia-induced injury. Inhibition of PKA by KT5720 abolished the protective effect of AM/AMBP-1 on hypoxia-induced apoptosis.

Conclusions

AM/AMBP-1 elevates cAMP levels, followed by activating PKA, to protect neural cells from the injury caused by hypoxia.

General significance

AM/AMBP-1 may be used as therapeutic agents to prevent neuron damage from brain ischemia.  相似文献   

4.
Wu R  Zhou M  Wang P 《Regulatory peptides》2003,112(1-3):19-26
Recent studies have demonstrated that administration of adrenomedullin (AM) and AM binding protein-1 (AMBP-1) maintains cardiovascular stability and reduces mortality in sepsis. However, the mechanism responsible for the beneficial effect of AM/AMBP-1 remains unknown. The aim of this study therefore was to determine whether AM/AMBP-1 directly reduces lipopolysaccharide (LPS)-induced secretion of TNF-alpha from murine macrophage-like cell line RAW 264.7 cells and Kupffer cells isolated from normal rats. TNF-alpha release and gene expression were determined by ELISA and RT-PCR, respectively. The results indicated that LPS increased TNF-alpha production from RAW cells by 38-63-fold in a dose- and time-dependent manner. Although incubation with AM or AMBP-1 alone inhibited LPS-induced TNF-alpha release by 14-22% and 13-22%, respectively, AM and AMBP-1 in combination significantly suppressed TNF-alpha production (by 24-35%). Moreover, the upregulated TNF-alpha mRNA by LPS stimulation was significantly reduced by AM/AMBP-1, but not by AM or AMBP-1 alone. In the Kupffer cells primary culture, AM or AMBP-1 alone inhibited LPS-induced TNF-alpha production by 52% and 44%, respectively. Co-culture with AM/AMBP-1 markedly reduced TNF-alpha production (by 90%). Moreover, AM or AMBP-1 alone decreased TNF-alpha mRNA expression by 41% and 36%, respectively, whereas the combination of AM/AMBP-1 decreased its expression by 63%. These results indicate that AM and AMBP-1 in combination effectively suppress LPS-induced TNF-alpha expression and release especially from primary cultured Kupffer cells, suggesting that the downregulatory effect of AM/AMBP-1 on proinflammatory cytokine TNF-alpha may represent a mechanism responsible for their beneficial effects in preventing inflammatory responses and tissue damage in sepsis.  相似文献   

5.
We recently discovered that the vascular responsiveness to adrenomedullin (AM), a potent vasoactive peptide, decreased during sepsis and hemorrhage in the rat and was markedly improved by its novel binding protein (AMBP-1). Moreover, AM/AMBP-1 appears to be one of the leading candidates for further development to treat sepsis and hemorrhage. However, the extremely high cost of commercial AMBP-1 limits the development of human AM and AMBP-1 as therapeutic agents. The purpose of this study was to isolate and purify AMBP-1 from normal human serum and test its stability and biological activity under in vitro and in vivo conditions. AMBP-1 was isolated and purified from normal human serum with a yield of about 3.0 mg per 100 mL and purity of >99%. The purified AMBP-1 has a AM-binding capacity similar to that of the commercial AMBP-1. Human AM and human AMBP-1 in combination significantly inhibited lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 production from macrophages. The biological activity of the purified human AMBP-1 was well preserved when stored at 45 degrees C for 5 d in solution or at 100 degrees C for 1 h in powder. Moreover, administration of AM and purified AMBP-1 to hemorrhaged rats attenuated tissue injury and neutrophil accumulation. Purified AMBP-1 in combination with AM also suppressed the hemorrhage-induced rise in serum cytokines TNF-alpha and IL-6. Thus, we have successfully purified biologically active AMBP-1 from human normal serum and demonstrated the stability of purified human AMBP-1. This technique will enable us to further develop human AM/AMBP-1 as a novel treatment for safe and effective therapy of patients with hemorrhagic shock, sepsis, and ischemic injury.  相似文献   

6.
Sepsis is a critical inflammatory condition from which numerous patients die due to multiple organ failure and septic shock. The vasoactive hormone adrenomedullin (AM) and its binding protein (AMBP-1) are beneficial in sepsis by abrogating the progression to irreversible shock and decreasing proinflammatory cytokine release. To investigate the anti-inflammatory mechanism, we studied to determine the effect of the AM/AMBP-1 complex on peroxisome proliferator-activated receptor-gamma (PPAR-gamma) expression and activation by using RAW264.7 cells and a rat endotoxemia model. LPS treatment significantly decreased PPAR-gamma expression in vivo and in vitro and was associated with increased TNF-alpha production. Treatment with AM/AMBP-1 for 4 h completely restored PPAR-gamma levels in both models, resulting in TNF-alpha suppression. In a knockdown model using small interfering RNA in RAW264.7 macrophages, AM/AMBP-1 failed to suppress TNF-alpha production in the absence of PPAR-gamma. LPS caused the suppression of intracellular cyclic AMP (cAMP), which was prevented by simultaneous AM/AMBP-1 treatment. Although incubation with dibutyryl cAMP significantly decreased LPS-induced TauNuF-alpha release, it did not alter PPAR-gamma expression. Through inhibition studies using genistein and PD98059 we found that the Pyk-2 tyrosine kinase-ERK1/2 pathway is in part responsible for the AM/AMBP-1-mediated induction of PPAR-gamma and the anti-inflammatory effect. We conclude that AM/AMBP-1 is protective in sepsis due to its vasoactive properties and direct anti-inflammatory effects mediated through both the cAMP-dependent pathway and Pyk-2-ERK1/2-dependent induction of PPAR-gamma.  相似文献   

7.
Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM) and its binding protein-1 (AMBP-1) is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle) or AM/AMBP-1 (96/320 μg kg BW) was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO), increased cytokine levels (IL-6 and TNF-α), angiogenesis (CD31, VEGF and TGFβ-1) and cell proliferation (Ki67). By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels) and Masson-Trichrome staining (collagen deposition) along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing.  相似文献   

8.
Polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late hypodynamic phase. Adrenomedullin (AM), a vasodilatory peptide, inhibits this transition from the early phase to the late phase. Adrenomedullin binding protein-1 (AMBP-1) enhances AM-mediated activities. The decrease of AMBP-1 levels in late sepsis reduces the vascular response to AM and produces the hypodynamic phase. Studies have indicated that the administration of LPS downregulates AMBP-1 production in the liver. Since hepatocytes are the primary source of AMBP-1 biosynthesis in the liver, we employed a co-culture strategy using hepatocyte and Kupffer cells to determine whether LPS directly or by increasing pro-inflammatory cytokines from Kupffer cells downregulates AMBP-1 production. Hepatocytes and Kupffer cells isolated from rats were co-cultured and treated with LPS for 24 h. LPS significantly attenuated AMBP-1 protein expression in a dose-dependent manner. Since AMBP-1 is basically a secretory protein, cell supernatants from co-culture cells treated with LPS were examined for AMBP-1 protein levels. LPS treatment caused a dose related decrease in AMBP-1 protein secretion. Similarly, LPS treatment produced a significant decrease in AMBP-1 protein expression in hepatocytes and Kupffer cells cultured using transwell inserts. LPS had no direct effect on AMBP-1 levels in cultured hepatocytes or Kupffer cells alone. To confirm that the observed effects in co-culture were due to the cytokines released from Kupffer cells, hepatocytes were treated with IL-1beta or TNF-alpha for 24 h and AMBP-1 expression was examined. The results indicated that both cytokines significantly inhibited AMBP-1 protein levels. Thus, pro-inflammatory cytokines released from Kupffer cells are responsible for downregulation of AMBP-1.  相似文献   

9.
Wu R  Dong W  Qiang X  Ji Y  Cui T  Yang J  Zhou M  Blau S  Marini CP  Ravikumar TS  Wang P 《Peptides》2008,29(7):1223-1230
We recently discovered that vascular responsiveness to adrenomedullin (AM), a vasoactive hormone, decreases after hemorrhage, which is markedly improved by the addition of its binding protein AMBP-1. One obstacle hampering the development of AM/AMBP-1 as resuscitation agents in trauma victims is the potential immunogenicity of rat proteins in humans. Although less potent than rat AM, human AM has been shown to increase organ perfusion in rats. We therefore hypothesized that administration of human AM/AMBP-1 improves organ function and survival after severe blood loss in rats. To test this, male Sprague-Dawley rats were bled to and maintained at an MAP of 40 mmHg for 90 min. They were then resuscitated with an equal volume of shed blood in the form of Ringer's lactate (i.e., low-volume resuscitation) over 60 min. At 15 min after the beginning of resuscitation, human AM/AMBP-1 (12/40 or 48/160 microg/kg BW) were administered intravenously over 45 min. Various pathophysiological parameters were measured 4h after resuscitation. In additional groups of animals, a 12-day survival study was conducted. Our result showed that tissue injury as evidenced by increased levels of transaminases, lactate, and creatinine, was present at 4h after hemorrhage and resuscitation. Moreover, pro-inflammatory cytokines TNF-alpha and IL-6 were also significantly elevated. Administration of AM/AMBP-1 markedly attenuated tissue injury, reduced cytokine levels, and improved the survival rate from 29% (vehicle) to 62% (low-dose) or 70% (high-dose). However, neither human AM alone nor human AMBP-1 alone prevented the significant increase in ALT, AST, lactate and creatinine at 4h after the completion of hemorrhage and resuscitation. Moreover, the half-life of human AM and human AMBP-1 in rats was 35.8 min and 1.68 h, respectively. Thus, administration of human AM/AMBP-1 may be a useful approach for attenuating organ injury, and reducing mortality after hemorrhagic shock.  相似文献   

10.
Downregulation of vascular endothelial constitutive nitric oxide synthase (ecNOS) contributes to the vascular hyporesponsiveness in sepsis. Although coadministration of the potent vasodilatory peptide adrenomedulin (AM) and the newly discovered AM binding protein (AMBP-1) maintains cardiovascular stability and reduces mortality in sepsis, it remains unknown whether AM/AMBP-1 prevents endothelial cell dysfunction. To investigate this possibility, we subjected adult male rats to sepsis by cecal ligation and puncture (CLP), with or without subsequent intravenous administration of the combination of AM (12 microg/kg) and AMBP-1 (40 microg/kg). Thoracic aortae were harvested 20 h after CLP (i.e., the late stage of sepsis) and endothelium-dependent vascular relaxation was determined by the addition of acetylcholine (ACh) in an organ bath system. In addition, ecNOS gene and protein expression was assessed by RT-PCR and immunohistochemistry, respectively. The results indicate that ACh-induced (i.e., endothelium-dependent) vascular relaxation was significantly reduced 20 h after CLP. Administration of AM/AMBP-1 prevented the reduction of vascular relaxation. In addition, ecNOS gene expression in aortic and pulmonary tissues was downregulated 20 h after CLP and AM/AMBP-1 attenuated such a reduction. Moreover, the decreased ecNOS staining in thoracic aortae of septic animals was prevented by the treatment with AM/AMBP-1. These results, taken together, indicate that AM/AMBP-1 preserves ecNOS and prevents reduced endothelium-dependent vascular relaxation (i.e., endothelial cell dysfunction) in sepsis. In light of our recent finding that AM/AMBP-1 improves organ function and reduces mortality in sepsis, it is most likely that the protective effect of these compounds on ecNOS is a mechanism responsible for the salutary effect of AM/AMBP-1 in sepsis.  相似文献   

11.
Adrenomedullin (AM), a potent vasodilatory peptide, plays an important role in initiating the hyperdynamic response during the early stage of sepsis. Moreover, the reduced vascular responsiveness to AM appears to be responsible for the transition from the early, hyperdynamic to the late, hypodynamic phase of sepsis. Although the novel specific AM binding protein-1 (AMBP-1) enhances AM-mediated action in a cultured cell line, it remains to be determined whether AMBP-1 plays any role in modulating vascular responsiveness to AM during sepsis. To study this, adult male rats were subjected to sepsis by cecal ligation and puncture (CLP). The thoracic aorta was harvested for determination of AM-induced vascular relaxation. Aortic levels of AMBP-1 were determined by Western blot analysis, and AM receptor gene expression in the aortic tissue was assessed by RT-PCR. The results indicate that AMBP-1 significantly enhanced AM-induced vascular relaxation in aortic rings from sham-operated animals. Although vascular responsiveness to AM decreased at 20 h after CLP (i.e., the late, hypodynamic stage of sepsis), addition of AMBP-1 in vitro restored the vascular relaxation induced by AM. Moreover, the aortic level of AMBP-1 decreased significantly at 20 h after CLP. In contrast, AM receptor gene expression was not altered under such conditions. These results, taken together, suggest that AMBP-1 plays an important role in modulating vascular responsiveness to AM, and the reduced AMBP-1 appears to be responsible for the vascular AM hyporesponsiveness observed during the hypodynamic phase of sepsis.  相似文献   

12.
Zhang F  Wu R  Zhou M  Blau SA  Wang P 《Regulatory peptides》2009,152(1-3):82-87
Previous studies have demonstrated that co-administration of rat adrenomedullin (AM) and human AM binding protein-1 (AMBP-1) has various beneficial effects following adverse circulatory conditions. In order to reduce rat proteins to elicit possible immune responses in humans, we determined the effect of human AM combined with human AMBP-1 after intestinal ischemia and reperfusion (I/R). Intestinal ischemia was induced in the rat by occluding the superior mesenteric artery for 90 min. At 60 min after the beginning of reperfusion, human AM/AMBP-1 at 3 different dosages was administered intravenously over 30 min. At 240 min after the treatment, blood and tissue samples were harvested and measured for pro-inflammatory cytokines (i.e., TNF-alpha and IL-6), myeloperoxidase activities in the gut and lungs, and cleaved caspase-3 expression in the lungs, as well as serum levels of hepatic enzymes and lactate. In additional groups of animals, a 10-day survival study was conducted. Results showed that administration of human AM/AMBP-1 reduced pro-inflammatory cytokines, attenuated organ injury, and improved the survival rate in a seemingly dose-response fashion. Co-administration of the highest dose of human AM/AMBP-1 in this study had the optimal therapeutic effect in the rat model of intestinal I/R.  相似文献   

13.
Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.  相似文献   

14.
Role of adrenomedullin and its receptor system in renal pathophysiology.   总被引:5,自引:0,他引:5  
M Mukoyama  A Sugawara  T Nagae  K Mori  H Murabe  H Itoh  I Tanaka  K Nakao 《Peptides》2001,22(11):1925-1931
Adrenomedullin (AM), a potent vasorelaxing, natriuretic and cell growth-modulating peptide, is thought to act as an autocrine/paracrine regulator in renal glomeruli and tubules. AM receptors comprise the calcitonin receptor-like receptor (CRLR) and a family of receptor-activity-modifying proteins (RAMPs 1-3); however, the pathophysiological role of AM and its receptor system in the kidney remains to be clarified. We examined the regulation of their expression in a rat model of renal injury and found that RAMP1, RAMP2 and CRLR expressions were markedly upregulated upon induction of fibrosis during obstructive nephropathy. Since AM exerts potent antiproliferative effects in various cell types, upregulation of the AM receptor system may play important roles in modulating the progression of renal diseases.  相似文献   

15.
Abstract: The major active ingredient of marijuana, (−)-Δ9-tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand, [123I]AM281{ N -(morpholin-4-yl)-5-(4-[123I]iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide}, that is structurally related to the CB1-selective antagonist SR141716A [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide]. Baboon single photon emission computed tomography studies, mouse brain dissection studies, and ex vivo autoradiography in rat brain demonstrated rapid passage of [123I]AM281 into the brain after intravenous injection, appropriate regional brain specificity of binding, and reduction of binding after treatment with SR141716A. AM281 has an affinity in the low nanomolar range for cerebellar binding sites labeled with [3H]SR141716A in vitro, and binding of [123I]AM281 is inhibited by several structurally distinct cannabinoid receptor ligands. We conclude that [123I]AM281 has appropriate properties for in vivo studies of cannabinoid CB1 receptors and is suitable for imaging these receptors in the living human brain.  相似文献   

16.
The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3′,5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24 h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose–response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.  相似文献   

17.
Free radicals, mitochondria, and hypoxia-ischemia in the developing brain   总被引:9,自引:0,他引:9  
The immature brain is particularly susceptible to free radical injury because of its poorly developed scavenging systems and high availability of iron for the catalytic formation of free radicals. Neurons are more vulnerable to free radical damage than glial cells, but oligodendrocyte progenitors and immature oligodendrocytes in very prematurely born infants are selectively vulnerable to depletion of antioxidants and free radical attack. Reactive oxygen and nitrogen species play important roles in the initiation of apoptotic mechanisms and in mitochondrial permeability transition, and therefore constitute important targets for therapeutic intervention. Oxidative stress is an early feature after cerebral ischemia and experimental studies targeting the formation of free radicals demonstrate various degrees of protection after perinatal insults. Oxidative stress-regulated release of proapoptotic factors from mitochondria appears to play a much more important role in the immature brain. This review will summarize and compare with the adult brain some of the current knowledge of free radical formation in the developing brain and its roles in the pathophysiology after cerebral hypoxia-ischemia.  相似文献   

18.
19.
Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. AM deficient mice die during late gestation; AM deficient embryos are anemic and very small compared to wild type (WT) embryos. It is thought that AM plays crucial roles in hematopoiesis and embryogenesis. To clarify the mechanisms of AM functions, we performed the yeast-two-hybrid assay to identify AM-interacting molecules; we found that PICOT (PKCθ interacting cousin of thioredoxin) preferentially bound to AM. We also showed that the N-terminal regions of both AM and PICOT were essential for their bindings and the inhibition of interaction of both molecules might lead to the cell growth retardation. Both PICOT and the yeast homolog of AM are known to be iron–sulfur proteins. The phenotype of PICOT deficient mice is very similar to that of anamorsin deficient mice; both mice are embryonic lethal. These data suggest that AM and PICOT might play cooperatively essential roles in embryogenesis as iron–sulfur cluster proteins.  相似文献   

20.
史加勉  王聪  郑勇  高程 《菌物学报》2023,42(1):118-129
工业革命以来,人类活动输入到生态系统中的氮迅速增加,已突破地球所能承受的氮循环阈值。过量氮沉降会造成生物多样性丧失等一系列危害,严重影响生态系统结构和功能。丛枝菌根(AM)真菌能够与大约70%-80%的陆地植物种类形成共生关系,在宿主植物养分吸收、抵抗外界不良环境压力、群落动态和物种共存、生物地球化学循环等方面具有重要的作用。探究AM真菌对氮沉降的响应对认识和把握菌根真菌缓解氮沉降的负面后果,维持生态系统的结构和功能具有重要意义。本文综述了AM真菌的形态结构、物种多样性和群落组成等对氮沉降的响应机制。前人研究表明氮沉降通常降低AM真菌的根系定殖率,减少根外菌丝密度和土壤孢子密度,改变菌丝生长的时间动态;降低AM真菌多样性,改变AM真菌群落组成。氮沉降主要通过缓解植物氮限制、降低植物对菌根的依赖性、减少植物对菌根的碳分配、改变根系和土壤中菌根生物量比率、在植物根内维持稳定的菌根真菌组成作为应对未来扰动的“保险”、改变土壤资源有效性及土壤酸度等直接和间接途径影响AM真菌结构和功能。我们建议在未来研究中整合多组学手段、开展学科交叉,聚焦复杂的生物互作体系对氮沉降的响应机制,以及AM真菌对氮沉降响应的生态后果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号