首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear pore complex spans the nuclear envelope and functions as a macromolecular transporter in the ATP-dependent process of nucleocytoplasmic transport. In this report, we present three dimensional (3D) structures for both membrane-associated and detergent- extracted Xenopus NPCs, imaged in frozen buffers by cryo-electron microscopy. A comparison of the differing configurations present in the 3D maps suggests that the spokes may possess an intrinsic conformational flexibility. When combined with recent data from a 3D map of negatively stained NPCs (Hinshaw, J. E., B. O. Carragher, and R. A. Milligan. 1992. Cell. 69:1133-1141), these observations suggest a minimal domain model for the spoke-ring complex which may account for the observed plasticity of this assembly. Moreover, lumenal domains in adjacent spokes are interconnected by radial arm dimers, forming a lumenal ring that may be responsible for anchoring the NPC within the nuclear envelope pore. Importantly, the NPC transporter is visualized as a centrally tapered cylinder that spans the entire width of the NPC, in a direction normal to the nuclear envelope. The central positioning, tripartite structure, and hollow nature of the transporter suggests that it may form a macromolecular transport channel, with a globular gating domain at each end. Finally, the packing of the transporter within the spokes creates a set of eight internal channels that may be responsible, in part, for the diffusion of ions and small molecules across the nuclear envelope.  相似文献   

2.
Chlorobaculum (Cba) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. As other anoxygenic green photosynthetic bacteria, Cba tepidum synthesizes bacteriochlorophylls for the assembly of a large light-harvesting antenna structure, the chlorosome. Chlorosomes are sac-like structures that are connected to the reaction centers in the cytoplasmic membrane through the BChl α-containing Fenna–Matthews–Olson protein. Most components of the photosynthetic machinery are known on a biophysical level, however, the structural integration of light harvesting with charge separation is still not fully understood. Despite over two decades of research, gaps in our understanding of cellular architecture exist. Here we present an in-depth analysis of the cellular architecture of the thermophilic photosynthetic green sulfur bacterium of Cba tepidum by cryo-electron tomography. We examined whole hydrated cells grown under different electron donor conditions. Our results reveal the distribution of chlorosomes in 3D in an unperturbed cell, connecting elements between chlorosomes and the cytoplasmic membrane and the distribution of reaction centers in the cytoplasmic membrane.  相似文献   

3.
The nuclear pore complex   总被引:2,自引:0,他引:2  
  相似文献   

4.
Adam SA 《Genome biology》2001,2(9):reviews0007.1-reviews00076
Nuclear pore complexes, the conduits for information exchange between the nucleus and cytoplasm, appear broadly similar in eukaryotes from yeast to human. Precisely how nuclear pore complexes regulate macromolecular and ionic traffic remains unknown, but recent advances in the identification and characterization of components of the complex by proteomics and genomics have provided new insights.  相似文献   

5.
The nuclear pore complex   总被引:4,自引:0,他引:4  
The nuclear pore complex is the largest supramolecular complex that assembles in the eukaryotic cell. This structure is highly dynamic and must disassemble prior to mitosis and reassemble after the event. The directed movement of macromolecules into and out of the nucleus occurs through the nuclear pore complex, a potentially regulatory point for translocation. Using biochemical and genetic approaches, several nuclear pore complex proteins from yeast and vertebrates have been well characterized. Although very little is known about plant nuclear pore proteins, research is providing new information that indicates that plant nuclear pore complexes may have some unique features.  相似文献   

6.
The nuclear pore complex as a transport machine   总被引:23,自引:0,他引:23  
  相似文献   

7.
8.
Nuclear pore complexes (NPCs) play a central role in mediating nucleocytoplasmic transport and exchange processes in eukaryotic cells. The arrangement and interactions of NPCs within amphibian nuclear envelopes have been studied using cryo-electron microscopy of unfixed and frozen hydrated specimens. The nuclear lamina in Necturus forms an orthogonal network with crossover distances which vary between 1,600 and 4,000 A and which may be related to the basic filament repeat of lamins. Furthermore, the NPCs are attached randomly within the confines of the lamin network, presumably by their nucleoplasmic rings. Image analysis of edge-on and en face projections of detergent-extracted NPCs has been combined with data on the coaxial thin rings to provide a quantitative evaluation of the triple ring model of NPC architecture proposed previously (Unwin, P. N. T., and R. Milligan. 1982. J. Cell Biol. 93:63-75). Additional details of the complex have been visualized including an intimate association of the inner spoke domains as an inner spoke ring, extensive domains within the spokes and coaxial thin rings, and interestingly, a central channel-like feature. Membrane-associated NPCs and detergent-extracted NPCs both possess peripherally located radial arms resulting in an effective diameter of approximately 1,450-1,500 A. In projection, the radial arms possess approximate mirror symmetry suggesting that they originate from both sides of the assembly. Moreover, membrane-associated NPCs are asymmetric at most radii and right-handed as viewed from the cytoplasm; detergent-extracted NPCs appear to be symmetric and have approximately 822 symmetry. Taken together, the data suggests that the framework of membrane-associated NPCs is perturbed from a symmetrical configuration, either during isolation of nuclei or by interactions with the lamina and the nuclear envelope in vivo. However, detergent extraction of nuclei appears to result in a more symmetrical alignment of components in apposing halves of the assembly.  相似文献   

9.
Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique "cap" at the cell end, this report provides structural insights into these fascinating Leptospira species.  相似文献   

10.
Gammaherpesviruses, including the human pathogens Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral–host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.  相似文献   

11.
Transport between the nucleus and cytoplasm is mediated by nuclear pore complexes (NPCs), perforations in the double-membrane of the nuclear envelope. NPCs are huge protein assemblies made up of distinct subcomplexes. The complex modular nature of the NPC and limitations in the current experimental approaches render the analysis of NPCs and nucleocytoplasmic transport at the molecular level difficult. Recent efforts in the NPC/nucleocytoplasmic transport field have focused on elucidating the core components that make up NPC structure (or the lack thereof) and function. These include results obtained by more conventional methods, such as electron microscopy or biochemical strategies, as well as more advanced applications, such as X-ray crystallography and atomic force microscopy.  相似文献   

12.
Flavobacterium johnsoniae cells glide rapidly over surfaces by an as-yet-unknown mechanism. Using cryo-electron tomography, we show that wild-type cells display tufts of approximately 5-nm-wide cell surface filaments that appear to be anchored to the inner surface of the outer membrane. These filaments are absent in cells of a nonmotile gldF mutant but are restored upon expression of plasmid-encoded GldF, a component of a putative ATP-binding cassette transporter.  相似文献   

13.
14.
The hyperthermophilic archaeon Pyrodictium grows in the form of a macroscopically visible network. It consists of cells entrapped in an extracellular matrix of hollow tubules, the "cannulae." Here, we present the three-dimensional structure of a single cell in conjunction with two extracellular cannulae, as determined by cryo-electron microscopy. To achieve this, the information from two independent tilt series of the same specimen was combined, with the specimen rotated in the second series. In the three-dimensional tomographic reconstruction, we were able to trace the two cannulae in their full length, in particular, also inside the cell. One cannula enters the periplasmic space, while the other cannula contacts the surface of the cell, the S-layer. This indicates that the cannulae interconnect individual cells with each other on the level of their periplasmic space; we do not, however, have evidence that they enter the cytoplasm of the cells. The implications of these data for possible functions of the cannulae are discussed.  相似文献   

15.
16.
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.  相似文献   

17.
As a third in a series of MD simulations investigating the binding dynamics between nuclear transport receptors and FG-repeats, Isgro and Schulten (2007b) unveil that close, physical intimacy between partners is likely to ensure a hassle-free passage through the nuclear pore complex.  相似文献   

18.
The study of species complexes is of particular interest to understand how evolutionary young species maintain genomic integrity. The Daphnia pulex complex has been intensively studied as it includes species that dominate freshwater environments in the Northern hemisphere and as it is the sole North American complex that shows transitions to obligate parthenogenesis. Past studies using mitochondrial markers have revealed the presence of 10 distinct lineages in the complex. This study is the first to examine genetic relationships among seven species of the complex at nuclear markers (nine microsatellite loci and one protein-coding gene). Clones belonging to the seven species of the Daphnia pulex complex were characterized at the mitochondrial NADH dehydrogenase (ND5) gene and at the Lactate dehydrogenase (LDH) locus. K-means, principal coordinate analyses and phylogenetic network analyses on the microsatellite data all separated European D. pulicaria, D. tenebrosa, North American D. pulex, D. pulicaria and their hybrids into distinct clusters. The hybrid cluster was composed of diploid and polyploid hybrids with D. pulex mitochondria and some clones with D. pulicaria mitochondria. By contrast, the phylogeny of the D. pulex complex using Rab4 was not well resolved but still showed clusters consisting mostly of D. pulex alleles and others of D. pulicaria alleles. Incomplete lineage sorting and hybridization may obscure genetic relationships at this locus. This study shows that hybridization and introgression have played an important role in the evolution of this complex.  相似文献   

19.
Assembly of nuclear pore complexes (NPCs) is a critical yet poorly understood cellular function. One approach to studying NPC assembly is to identify yeast mutants defective in this process. This requires robust assays for NPC assembly that can be used for phenotypic analysis. We have previously reconstructed yeast nuclei from electron micrographs of serially sectioned cells to precisely determine the number of NPCs (Winey et al., 1997). Here we report the analysis of strains mutant in either of two nucleoporin-encoding genes, NIC96 (Zabel et al., 1996) and NUP192 (Kosova et al., 1999). Using conditional alleles of either gene, we have found that the NPC number falls significantly following shift to the restrictive temperature. We conclude that the drop in NPC number results from the failure to assemble new NPCs during cell divisions, leading to the dilution of NPCs that existed when the cells were shifted to the restrictive temperature. We are also able to document a subtle defect in NPC numbers in nup192-15 cells at their permissive temperature. The data presented here quantitatively demonstrate that NPC numbers fall in nic96-1 and nup192-15 strains upon shifting to the restrictive temperature, indicating that these gene products are required for NPC assembly.  相似文献   

20.
The major polypeptides of the nuclear pore complex   总被引:24,自引:0,他引:24  
Nuclear envelopes of maturing oocytes of various amphibia contain an unusually high number of pore complexes in very close packing. Consequently, nuclear envelopes, which can be manually isolated in great purity, provide a remarkable enrichment of nuclear pore complex material, relative to membranous and other interporous structures. When the polypeptides of nuclear envelopes isolated from oocytes of Xenopus laevis and Triturus alpestris are examined by gel electrophoresis, visualized either by staining with Coomassie blue or by radiofluorography after in vitro reaction with [3H]dansyl chloride, a characteristic pattern is obtained (10 major and 15 minor bands). This polypeptide pattern is radically different from that of the nuclear contents isolated from the same cell. Extraction of the nuclear envelope with high salt concentrations and moderately active detergents such as Triton X-100 results in the removal of membrane material but leaves most of the non-membranous structure of the pore complexes. The dry weight of the pore complex (about 0.2 femtograms) remains essentially unchanged during such extractions as measured by quantitative electron microscopy. The extracted preparations which are highly enriched in nuclear pore complex material contain only two major polypeptide components with apparent molecular weights of 150 000 and 73 000. Components of such an electrophoretic mobility are not present as major bands, if at all, in nuclear contents extracted in the same way. It is concluded that these two polypeptides are the major constituent protein(s) of the oocyte nuclear pore complex and are specific for this structure. When nuclear envelopes are isolated from rat liver and extracted with high salt buffers and Triton X-100 similar bands are predominant, but two additional major components of molecular weights of 78 000 and 66 000 are also recognized. When the rat liver nuclear membranes are further subfractionated material enriched in the 66 000 molecular weight component can be separated from the membrane material, indicating that this is relatively loosely associated material, probably a part of the nuclear matrix. The results suggest that the nuclear pore complex is not only a characteristic ubiquitous structure but also contains similar, if not identical, skeletal proteins that are remarkably resistant to drastic changes of ionic strength as well as to treatments with detergents and thiol reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号