首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food webs, the networks describing “who eats whom” in an ecosystem, are nearly interval, i.e. there is a way to order the species so that almost all the resources of each consumer are adjacent in the ordering. This feature has important consequences, as it means that the structure of food webs can be described using a single (or few) species' traits. Moreover, exploiting the quasi-intervality found in empirical webs can help build better models for food web structure. Here we investigate which species trait is a good proxy for ordering the species to produce quasi-interval orderings. We find that body size produces a significant degree of intervality in almost all food webs analyzed, although it does not match the maximum intervality for the networks. There is also a great variability between webs. Other orderings based on trophic levels produce a lower level of intervality. Finally, we extend the concept of intervality from predator-centered (in which resources are in intervals) to prey-centered (in which consumers are in intervals). In this case as well we find that body size yields a significant, but not maximal, level of intervality. These results show that body size is an important, although not perfect, trait that shapes species interactions in food webs. This has important implications for the formulation of simple models used to construct realistic representations of food webs.  相似文献   

2.
Despite the exceptional complexity formed by species and their interactions in ecological networks, such as food webs, regularities in the network structures are repeatedly demonstrated. The interactions are determined by the characteristics of a species. The characteristics are in turn determined by the species’ phylogenetic relationships, but also by factors not related to evolutionary history. Here, we test whether species’ phylogenetic relationships provides a significant proxy for food web intervality. We thereafter quantify the degree to which different species traits remain valuable predictors of food web structure after the baseline effect of species’ relatedness has been removed. We find that the phylogenetic relationships provide a significant background from which to estimate food web intervality and thereby structure. However, we also find that there is an important, non-negligible part of some traits, e.g., body size, in food webs that is not accounted for by the phylogenetic relationships. Additionally, both these relationships differ depending if a predator or a prey perspective is adopted. Clearly, species’ evolutionary history as well as traits not determined by phylogenetic relationships shapes predator-prey interactions in food webs, and the underlying evolutionary processes take place on slightly different time scales depending on the direction of predator-prey adaptations.  相似文献   

3.
Body size or mass is one of the main factors underlying food webs structure. A large number of evolutionary models have shown that indeed, the adaptive evolution of body size (or mass) can give rise to hierarchically organised trophic levels with complex between and within trophic interactions. However, these models generally make strong arbitrary assumptions on how traits evolve, casting doubts on their robustness. In particular, biomass conversion efficiency is always considered independent of the predator and prey size, which contradicts with the literature. In this paper, we propose a general model encompassing most previous models which allows to show that relaxing arbitrary assumptions gives rise to unrealistic food webs. We then show that considering biomass conversion efficiency dependent on species size is certainly key for food webs adaptive evolution because realistic food webs can evolve, making obsolete the need of arbitrary constraints on traits' evolution. We finally conclude that, on the one hand, ecologists should pay attention to how biomass flows into food webs in models. On the other hand, we question more generally the robustness of evolutionary models for the study of food webs.  相似文献   

4.
Food Web Topology in High Mountain Lakes   总被引:1,自引:0,他引:1  
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.  相似文献   

5.
Explaining the structure of ecosystems is one of the great challenges of ecology. Simple models for food web structure aim at disentangling the complexity of ecological interaction networks and detect the main forces that are responsible for their shape. Trophic interactions are influenced by species traits, which in turn are largely determined by evolutionary history. Closely related species are more likely to share similar traits, such as body size, feeding mode and habitat preference than distant ones. Here, we present a theoretical framework for analysing whether evolutionary history--represented by taxonomic classification--provides valuable information on food web structure. In doing so, we measure which taxonomic ranks better explain species interactions. Our analysis is based on partitioning of the species into taxonomic units. For each partition, we compute the likelihood that a probabilistic model for food web structure reproduces the data using this information. We find that taxonomic partitions produce significantly higher likelihoods than expected at random. Marginal likelihoods (Bayes factors) are used to perform model selection among taxonomic ranks. We show that food webs are best explained by the coarser taxonomic ranks (kingdom to class). Our methods provide a way to explicitly include evolutionary history in models for food web structure.  相似文献   

6.
Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co‐existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules—that is, aggregates composed of species that more frequently interact—which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a “weighted” ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short‐term environmental changes impact the abundance of planktonic primary producers; this affects their consumers’ behavior and cascades into the overall rearrangement of trophic links. Food web re‐adjustments are both direct, through the rewiring of trophic‐interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such “systemic behavior,” that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change.  相似文献   

7.
The dynamics of spatially coupled food webs   总被引:5,自引:2,他引:3  
The dynamics of ecological systems include a bewildering number of biotic interactions that unfold over a vast range of spatial scales. Here, employing simple and general empirical arguments concerning the nature of movement, trophic position and behaviour we outline a general theory concerning the role of space and food web structure on food web stability. We argue that consumers link food webs in space and that this spatial structure combined with relatively rapid behavioural responses by consumers can strongly influence the dynamics of food webs. Employing simple spatially implicit food web models, we show that large mobile consumers are inordinately important in determining the stability, or lack of it, in ecosystems. More specifically, this theory suggests that mobile higher order organisms are potent stabilizers when embedded in a variable, and expansive spatial structure. However, when space is compressed and higher order consumers strongly couple local habitats then mobile consumers can have an inordinate destabilizing effect. Preliminary empirical arguments show consistency with this general theory.  相似文献   

8.
Key processes such as trophic interactions and nutrient cycling are often influenced by the element content of organisms. Previous analyses have led to some preliminary understanding of the relative importance of evolutionary and ecological factors determining animal stoichiometry. However, to date, the patterns and underlying mechanisms of consumer stoichiometry at interspecific and intraspecific levels within natural ecosystems remain poorly investigated. Here, we examine the association between phylogeny, trophic level, body size, and ontogeny and the elemental composition of 22 arthropod as well as two lizard species from the coastal zone of the Atacama Desert in Chile. We found that, in general, whole‐body P content was more variable than body N content both among and within species. Body P content showed a significant phylogenetic signal; however, phylogeny explained only 4% of the variation in body P content across arthropod species. We also found a significant association between trophic level and the element content of arthropods, with carnivores having 15% greater N and 70% greater P contents than herbivores. Elemental scaling relationships across species were only significant for body P content, and even the P content scaling relationship was not significant after controlling for phylogeny. P content did decrease significantly with body size within most arthropod species, which may reflect the size dependence of RNA content in invertebrates. In contrast, larger lizards had higher P contents and lower N:P ratios than smaller lizards, which may be explained by size‐associated differences in bone and scale investments. Our results suggests that structural differences in material allocation, trophic level and phylogeny can all contribute to variation in the stoichiometry of desert consumers, and they indicate that the elemental composition of animals can be useful information for identifying broad‐scale linkages between nutrient cycling and trophic interactions in terrestrial food webs.  相似文献   

9.
10.
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.  相似文献   

11.

Background

Simple models inspired by processes shaping consumer-resource interactions have helped to establish the primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic relationships as well.

Methodology/Principal Findings

We used a likelihood-based model selection approach to compare the performance of food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall structural properties of real mutualistic networks.

Conclusions/Significance

Based on our results we hypothesize that processes leading to feeding hierarchy, which is a characteristic shared by all food web models, might be a fundamental aspect in the assembly of mutualisms. These findings suggest that similar underlying ecological processes might be important in organizing different types of interactions.  相似文献   

12.
Anthropogenic change in the abundance or identity of dominant top predators may induce reorganizations in whole food webs. Predicting these reorganizations requires identifying the biological rules that govern trophic niches. However, we still lack a detailed understanding of the respective contributions of body size, behaviour (e.g. match between predator hunting mode and prey antipredator strategy), phylogeny and/or ontogeny in determining both the presence and strength of trophic interactions. Here, we address this question by measuring zooplankton numerical response to fish predators in lake enclosures. We compared the fit to zooplankton count data of models grouping zooplankters based either on 1) body sizes, 2) antipredator behaviour, 3) body size combined with antipredator behaviour or on 4) phylogeny combined with ontogeny (i.e. different life stages of copepods). Body size was a better predictor of zooplankton numerical response to fish than antipredator behaviour, but combining body size and behaviour provided even better predictions. Models based on phylogeny combined with ontogeny clearly outperformed those based on other zooplankton grouping rules, except when phylogeny was poorly resolved. Removing ontogenetic information plagued the predictive power of the highly-resolved (genus-level) phylogenetic grouping but not of medium-resolved or poorly-resolved phylogenetic grouping. Our results support the recent use of phylogeny as a superior surrogate for traits controlling trophic niches, and further highlight the added value of combining phylogeny with ontogenetic traits. Further improvements in our mechanistic understanding of how trophic networks are shaped are bound to uncovering the trophic traits captured by phylogeny and ontogeny, but that currently remain hidden to us.  相似文献   

13.
Pierre Olivier  Benjamin Planque 《Oikos》2017,126(9):1339-1346
A food web topology describes the diversity of species and their trophic interactions, i.e. who eats whom, and structural analysis of food web topologies can provide insight into ecosystem structure and function. It appears simple, at first sight, to list all species and their trophic interactions. However, the very large number of species at low trophic levels and the impossibility to monitor all trophic interactions in the ocean makes it impossible to construct complete food web topologies. In practice, food web topologies are simplified by aggregating species into groups termed trophospecies. It is not clear though, how much simplified versions of food webs retain the structural properties of more detailed networks. Using the most comprehensive Barents Sea food web to date, we investigate the performance of methods to construct simplified food webs using three approaches: taxonomic, structural and regular clustering. We then evaluate how topological properties vary with the level of network simplification. Results show that alteration of food web structural properties due to aggregation are highly sensitive to the methodology used for grouping species and trophic links. In the specific case of the Barents Sea, we show that it is possible to preserve key structural properties of the original complex food web in simplified versions when using taxonomic or structural clustering combined with intermediate 25% linkage for trophic aggregation.  相似文献   

14.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   

15.
16.
The energetic demand of consumers increases with body size and temperature. This implies that energetic constraints may limit the trophic position of larger consumers, which is expected to be lower in tropical than in temperate regions to compensate for energy limitation. Using a global dataset of 3635 marine and freshwater ray‐finned fish species, we addressed if and how climate affects the fish body size–trophic position relationship in both freshwater and marine ecosystems, while controlling for the effects of taxonomic affiliation. We observed significant fish body size–trophic position relationships for different ecosystems. However, only in freshwater systems larger tropical fish presented a significantly lower trophic position than their temperate counterparts. Climate did not affect the fish body size–trophic position relationship in marine systems. Our results suggest that larger tropical freshwater fish may compensate for higher energetic constraints feeding at lower trophic positions, compared to their temperate counterparts of similar body size. The lower latitudinal temperature range in marine ecosystems and/or their larger ecosystem size may attenuate and/or compensate for the energy limitation of larger marine fish. Based on our results, temperature may determine macroecological patterns of aquatic food webs, but its effect is contingent on ecosystem type. We suggest that freshwater ecosystems may be more sensitive to warming‐induced alterations in food web topology and food chain length than marine ecosystems.  相似文献   

17.
For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait‐matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait‐matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities.  相似文献   

18.
The cascade model successfuly predicts many patterns in reported food webs. A key assumption of this model is the existence of a predetermined trophic hierarchy; prey are always lower in the hierarchy than their predators. At least three studies have suggested that, in animal food webs, this hierarchy can be explained to a large extent by body size relationships. A second assumption of the standard cascade model is that trophic links not prohibited by the hierarchy occur with equal probability. Using nonparametric contingency table analyses, we tested this ”equiprobability hypothesis” in 16 published animal food webs for which the adult body masses of the species had been estimated. We found that when the hierarchy was based on body size, the equiprobability hypothesis was rejected in favor of an alternative, ”predator-dominance” hypothesis wherein the probability of a trophic link varies with the identity of the predator. Another alternative to equiprobabilty is that the probability of a trophic link depends upon the ratio of the body sizes of the two species. Using nonparametric regression and liklihood ratio tests, we show that a size-ratio based model represents a significant improvement over the cascade model. These results suggest that models with heterogeneous predation probabilities will fit food web data better than the homogeneous cascade model. They also suggest a new way to bridge the gap between static and dynamic food web models. Received: 3 February 1999 / Accepted: 26 October 1999  相似文献   

19.
Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species’ trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant–consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant–consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.  相似文献   

20.
The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria ( Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号