首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the mechanisms maintaining local species richness is a major topic in tropical ecology. In ecological communities of Madagascar, primates represent a major part of mammalian diversity and, thus, are a suitable taxon to study these mechanisms. Previous research suggested that ecological niche differentiation facilitates the coexistence of lemurs. However, detailed data on all species making up diverse local primate assemblages is rarely available, hampering community‐wide tests of niche differentiation among Malagasy mammals. Here, we took an indirect approach and used stable isotopes as long‐term indicators of individuals' diets to answer the question of whether trophic patterns and food‐related mechanisms stabilize coexistence in a species‐rich lemur community. We analyzed stable carbon and nitrogen isotopes in hair collected from eight syntopic lemurs in Kirindy Forest. We found that lemur species were well separated into trophic niches and ranged over two trophic levels. Furthermore, species were densely packed in isotopic space suggesting that past competitive interactions between species are a major structuring force of this dry forest lemur community. Results of other comparative studies on primates and our findings underline that—in contrast to communities worldwide—the structure and composition of lemur communities follow predictions of ecological niche theory. Patterns of competitive interactions might be more clearly revealed in Malagasy primate communities than elsewhere because lemurs represent a large fraction of ecologically interacting species in these communities. The pronounced trophic niche differentiation among lemurs is most likely due to intense competition in the past as is characteristic for adaptive radiations. Am J Phys Anthropol 153:249–259, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

2.

Background and Aims

Nutritional changes associated with the evolution of achlorophyllous, mycoheterotrophic plants have not previously been inferred with robust phylogenetic hypotheses. Variations in heterotrophy in accordance with the evolution of leaflessness were examined using a chlorophyllous–achlorophyllous species pair in Cymbidium (Orchidaceae), within a well studied phylogenetic background.

Methods

To estimate the level of mycoheterotrophy in chlorophyllous and achlorophyllous Cymbidium, natural 13C and 15N contents (a proxy for the level of heterotrophy) were measured in four Cymbidium species and co-existing autotrophic and mycoheterotrophic plants and ectomycorrhizal fungi from two Japanese sites.

Key Results

δ13C and δ15N values of the achlorophyllous C. macrorhizon and C. aberrans indicated that they are full mycoheterotrophs. δ13C and δ15N values of the chlorophyllous C. lancifolium and C. goeringii were intermediate between those of reference autotrophic and mycoheterotrophic plants; thus, they probably gain 30–50 % of their carbon resources from fungi. These data suggest that some chlorophyllous Cymbidium exhibit partial mycoheterotrophy (= mixotrophy).

Conclusions

It is demonstrated for the first time that mycoheterotrophy evolved after the establishment of mixotrophy rather than through direct shifts from autotrophy to mycoheterotrophy. This may be one of the principal patterns in the evolution of mycoheterotrophy. The results also suggest that the establishment of symbiosis with ectomycorrhizal fungi in the lineage leading to mixotrophic Cymbidium served as pre-adaptation to the evolution of the mycoheterotrophic species. Similar processes of nutritional innovations probably occurred in several independent orchid groups, allowing niche expansion and radiation in Orchidaceae, probably the largest plant family.  相似文献   

3.
Madagascar has lost about half of its forest cover since 1953 with much regional variation, for instance most of the coastal lowland forests have been cleared. We sampled the endemic forest-dwelling Helictopleurini dung beetles across Madagascar during 2002-2006. Our samples include 29 of the 51 previously known species for which locality information is available. The most significant factor explaining apparent extinctions (species not collected by us) is forest loss within the historical range of the focal species, suggesting that deforestation has already caused the extinction, or effective extinction, of a large number of insect species with small geographical ranges, typical for many endemic taxa in Madagascar. Currently, roughly 10% of the original forest cover remains. Species-area considerations suggest that this will allow roughly half of the species to persist. Our results are consistent with this prediction.  相似文献   

4.
The extinction of large vertebrates in the last few millennia has left a legacy of evolutionary anachronisms. Among these are plant structural defences that persist long after the extinction of the browsers. A peculiar, and controversial, example is a suite of traits common in divaricate (wide-angled branching) plants from New Zealand. Divaricate architecture has been interpreted as an adaptive response to cold climates or an anachronistic defence against the extinct moas. Madagascar, a larger tropical island, also had a fauna of large flightless birds, the elephant birds. If these extinct ratites selected for similar plant defences, we expected to find convergent features between New Zealand and Malagasy plants, despite their very different climates. We searched the southern thickets of Madagascar for plants with putative anti-ratite defences and scored candidate species for a number of traits common to many New Zealand divaricates. We found many Malagasy species in 25 families and 36 genera shared the same suite of traits, the 'wire plant' syndrome, as divaricates in New Zealand that resist ratite browsing. Neither ecologically, nor phylogenetically, matched species from South Africa shared these traits. Malagasy wire plants differ from many New Zealand divaricates in lacking the distinctive concentration of leaves in the interior of shrubs. We suggest that New Zealand divaricates have a unique amalgam of traits that acted as defences and also confer tolerance to cold. We conclude that many woody species in the thickets of southern Madagascar share, with New Zealand, anachronistic structural defences against large extinct bird browsers.  相似文献   

5.
6.
Deterministic theories in community ecology suggest that local, niche-based processes, such as environmental filtering, biotic interactions and interspecific trade-offs largely determine patterns of species diversity and composition. In contrast, more stochastic theories emphasize the importance of chance colonization, random extinction and ecological drift. The schisms between deterministic and stochastic perspectives, which date back to the earliest days of ecology, continue to fuel contemporary debates (e.g. niches versus neutrality). As illustrated by the pioneering studies of Robert H. MacArthur and co-workers, resolution to these debates requires consideration of how the importance of local processes changes across scales. Here, we develop a framework for disentangling the relative importance of deterministic and stochastic processes in generating site-to-site variation in species composition (β-diversity) along ecological gradients (disturbance, productivity and biotic interactions) and among biogeographic regions that differ in the size of the regional species pool. We illustrate how to discern the importance of deterministic processes using null-model approaches that explicitly account for local and regional factors that inherently create stochastic turnover. By embracing processes across scales, we can build a more synthetic framework for understanding how niches structure patterns of biodiversity in the face of stochastic processes that emerge from local and biogeographic factors.  相似文献   

7.
Understanding the origin and maintenance of community composition through ecological and evolutionary time has been a central challenge in ecology. However little is known about how extinction may alter patterns of phylogenetic and phenotypic structure within communities. To address this, we used past and present primate communities in Madagascar as our model system to explore how a large extinction event within a taxon may alter evolutionary relationships and phenotypic distributions within communities. We also explored the influence of environment on the structure of present‐day lemur communities. We found a phylogenetic pattern of overdispersion in both past and present‐day communities. However, trait structures, including relative dispersion of body masses and trophic niches were altered following extinction. We posit that the overdispersed phylogenetic patterns have resulted from the unique ecological and evolutionary history of Madagascar's primates including a rapid adaptive radiation in the presence of a broad niche‐space available during colonization. Differences in trait structures between present and past primate communities may be reflective of the selective extinction process that eliminated the largest primates from the island. Habitat also appeared to influence the structure of present‐day lemur communities. Lower divergence in patterns of phylogeny, body mass and activity rhythms were found in dry relative to wet habitats. This may be due to potential advantages of being small and nocturnal in environments with low productivity and hot dry climates. We suggest current studies exploring community processes should consider potential effects of past extinction events. Such work is important for understanding community assembly, coexistence, and mechanisms driving extinctions, particularly given the current extinction crisis facing ecosystems globally.  相似文献   

8.
Plants producing toxic plant secondary metabolites (PSMs) deter folivores from feeding on them. Animals that can cope with noxious PSMs have a niche with a competitive advantage over other species. However, the ability to cope with toxic PSMs incurs the costs of detoxification. To assess possible compensations for the ingestion of toxic PSMs, we compare the chemical quality of plants consumed by bamboo lemurs (genera Hapalemur and Prolemur; strepsirrhine primates of Madagascar) in areas with and without bamboo. Some bamboo lemurs consume bamboo containing concentrations of cyanogenic substances 10–50 times above the average lethal dosage for mammals, and we postulate that animals consuming cyanogenic substances need supplementary protein or readily available energy for detoxification. We compared the chemical composition of food consumed by three species of bamboo lemurs that feed mainly (>80% of their time) on bamboo in the evergreen rainforest of Ranomafana (Madagascar) with published data of the diets of bamboo lemurs at two sites without highly cyanogenic plants (reed beds of Lac Alaotra and the evergreen littoral forest of Mandena) and with food of sympatric folivorous lemur species that do not feed on bamboo. Lemurs feeding on bamboo consumed up to twice as much protein as bamboo lemurs in areas without bamboo and sympatric lemur species that feed on leaves of trees. Concentrations of nonstructural carbohydrates (a source of energy) showed the opposite trend. This result supports the hypothesis that feeding on cyanogenic plants is linked to high protein intake, either as a source of protein or for sulfur-containing amino acids that can be used for detoxification. Owing to the high protein concentrations in bamboo, however, we cannot distinguish between the hypothesis that lemurs that eat bamboo target additional food items with higher protein from the hypothesis that lemurs feeding on bamboo unavoidably obtain higher concentrations of protein than animals feeding on leaves of trees, without an added nutritional benefit.  相似文献   

9.
We have previously demonstrated that interrupting the protein–protein interaction (PPI) of β-tubulin:chaperonin-containing TCP-1β (CCT-β) induces the selective killing of multidrug-resistant cancer cells due to CCT-β overexpression. However, the molecular mechanism has not yet been identified. In this study, we found that CCT-β interacts with a myriad of intracellular proteins involved in the cellular functions of the endoplasmic reticulum (ER), mitochondria, cytoskeleton, proteasome and apoptosome. Our data show that the targeted cells activate both the heat-shock protein 90 (Hsp90)-associated protein ubiquitination/degradation pathway to eliminate misfolded proteins in the cytoplasm and the valosin-containing protein (VCP)-centered ER-associated protein degradation pathway to reduce the excessive levels of unfolded polypeptides from the ER, thereby mitigating ER stress, at the onset of β-tubulin:CCT-β complex disruption. Once ER stress is expanded, ER stress-associated apoptotic signaling is enforced, as exhibited by cellular vacuolization and intracellular Ca2+ release. Furthermore, the elevated intracellular Ca2+ levels resulting from capacitative Ca2+ entry augments apoptotic signaling by provoking mitochondrial perturbation and caspase overactivation in the targeted cells. These findings not only provide a detailed picture of the apoptotic signaling cascades evoked by targeting the β-tubulin:CCT-β complex but also demonstrate a strategy to combat malignancies with chemoresistance to Hsp90- and VCP-related anticancer agents.  相似文献   

10.
Ecological niches of organisms vary across geographical space, but niche shift patterns between regions and the underlying mechanisms remain largely unexplored. We studied shifts in the pH niche of 42 temperate forest plant species across a latitudinal gradient from northern France to boreo‐nemoral Sweden. We asked 1) whether species restrict their niches with increasing latitude as they reach their northern range margin (environmental constraints); 2) whether species expand their niches with increasing latitude as regional plant species richness decreases (competitive release); and 3) whether species shift their niche position toward more acidic sites with increasing latitude as the relative proportion of acidic soils increases (local adaptation). Based on 1458 vegetation plots and corresponding soil pH values, we modelled species response curves using Huisman–Olff–Fresco models. Four niche measures (width, position, left and right border) were compared among regions by randomization tests. We found that with increasing latitude, neutrophilic species tended to retreat from acidic sites, indicating that these species retreat to more favorable sites when approaching their range margin. Alternatively, these species might benefit from enhanced nitrogen deposition on formerly nutrient‐poor, acidic sites in southern regions or lag behind in post‐glacial recolonization of potential habitats in northern regions. Most acidophilic species extended their niche toward more base‐rich sites with increasing latitude, indicating competitive release from neutrophilic species. Alternatively, acidophilic species might benefit from optimal climatic conditions in the north where some have their core distribution area. Shifts in the niche position suggested that local adaptation is of minor importance. We conclude that shifts in the pH niche of temperate forest plants are the rule, but the directions of the niche shifts and possible explanations vary. Our study demonstrates that differentiating between acidophilic and neutrophilic species is crucial to identify general patterns and underlying mechanisms.  相似文献   

11.
12.
Mercury (Hg) is increasing in marine food webs, especially at high latitudes. The bioaccumulation and biomagnification of methyl mercury (MeHg) has serious effects on wildlife, and is most evident in apex predators. The MeHg body burden in birds is the balance of ingestion and excretion, and MeHg in feathers is an effective indicator of overall MeHg burden. Ivory gulls (Pagophila eburnea), which consume ice-associated prey and scavenge marine mammal carcasses, have the highest egg Hg concentrations of any Arctic bird, and the species has declined by more than 80% since the 1980s in Canada. We used feathers from museum specimens from the Canadian Arctic and western Greenland to assess whether exposure to MeHg by ivory gulls increased from 1877 to 2007. Based on constant feather stable-isotope (δ13C, δ15N) values, there was no significant change in ivory gulls'' diet over this period, but feather MeHg concentrations increased 45× (from 0.09 to 4.11 µg g−1 in adults). This dramatic change in the absence of a dietary shift is clear evidence of the impact of anthropogenic Hg on this high-latitude threatened species. Bioavailable Hg is expected to increase in the Arctic, raising concern for continued population declines in high-latitude species that are far from sources of environmental contaminants.  相似文献   

13.
Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate‐based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister‐pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris–E. cinereiceps and E. rufus–E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons–E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.  相似文献   

14.
I review new evidence on origins and adaptive radiation of Malagasy lemurs, a remarkably diverse group containing 13% of living primate species. The number of recognized lemur species has increased significantly, partly due to research revealing specific subdivisions within known populations but mainly because of discovery of new populations through fieldwork. Some species feared to be extinct have also been rediscovered. Specific numbers have increased particularly in small-bodied, cryptic genera for which continued research will surely reveal even more species.Adaptative radiation of lemurs has been essentially confined to Madagascar. The high density of lemur species on that island, associated with very small geographical ranges, has major implications both for their evolutionary divergence and for conservation. Reconstructions of phylogenetic relationships among primates have been considerably enhanced by DNA sequence data. Sufficient data are now available from both nuclear and mitochondrial sequences to examine relationships among and within the major groups of living primates. Most studies have confirmed that lemurs constitute a monophyletic sister-group of the lorisiform clade and all exclude a specific relationship between cheirogaleids and lorisiforms repeatedly inferred from morphological evidence. However, some analyses indicate that the aye-aye may have branched away before the divergence between other lemurs and lorisiforms. DNA sequence analyses have also yielded a broad consensus for relationships between Eulemur, Hapalemur, Lemur and Varecia: Varecia branched away first, while Lemur is more closely related to Hapalemur than to Eulemur. As debate about phylogenetic relationships among lemurs and other primates seems to have been settled in favor of lemur monophyly (possibly excluding the aye-aye), only a single invasion of Madagascar is required; but it must still be explained how ancestral lemurs could have migrated there at an appropriate time. Separation between Madagascar and Africa was apparently complete by about 120 Ma, too far in the past for direct overland migration. A recent hypothesis suggested that uplifted land in the Mozambique Channel assisted colonization of Madagascar 26-45 Ma, seemingly agreeing with an estimated date of about 40 Ma for divergence of lemurs from other primates. However, mounting evidence suggests that divergence occurred significantly earlier. Because the earliest known fossil representatives of several modern orders of placental mammals (including primates) are dated no earlier than the early Tertiary, it is widely accepted that their divergence took place after the Cretaceous/Tertiary mass extinction. Yet the known fossil record can only yield minimum divergence times; if sampling is poor and/or biased there may be a considerable discrepancy between minimum and actual dates. There is, for example, virtually no known fossil record for lemurs in Madagascar and the earliest known representatives are subfossil lemurs, so in this case a direct reading of the fossil record would indicate that the lemurs first originated just a few thousand years ago! Examination of underestimation of times of origin because of poor sampling in the fossil record has confirmed previous suggestions that primates originated considerably earlier than generally believed. Several recent phylogenetic reconstructions based on DNA sequence data and using calibration dates derived from groups other than primates provide independent support for this inference. Overall, it now seems that primates originated at around 90 Ma rather than the 55 Ma indicated by direct reading of the known fossil record. Hence, colonization of Madagascar by lemurs would have taken place at about 80 Ma, double the date usually accepted, and should be interpreted in terms of contemporary continental relationships.  相似文献   

15.
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.  相似文献   

16.
The social niche specialization hypothesis predicts that repeated social interactions will generate social niches within groups, thereby promoting consistent individual differences in behaviour. Current support for this hypothesis is mixed, probably because the importance of social niches is dependent upon the ecology of the species. We test whether repeated interactions among group mates generate consistent individual differences in boldness in the social spider, Stegodyphus dumicola. In support of the social niche specialization hypothesis, we found that consistent individual differences in boldness increased with longer group tenure. Interestingly, these differences took longer to appear than in previous work suggesting this species needs more persistent social interactions to shape its behaviour. Recently disturbed colonies were shyer than older colonies, possibly reflecting differences in predation risk. Our study emphasizes the importance of the social environment in generating animal personalities, but also suggests that the pattern of personality development can depend on subtle differences in species'' ecologies.  相似文献   

17.
Investigating how species coped with past environmental changes informs how modern species might face human-induced global changes, notably via the study of historical extinction, a dominant feature that has shaped current biodiversity patterns. The genus Bombus, which comprises 250 mostly cold-adapted species, is an iconic insect group sensitive to current global changes. Through a combination of habitat loss, pathogens and climate change, bumblebees have experienced major population declines, and several species are threatened with extinction. Using a time-calibrated tree of Bombus, we analyse their diversification dynamics and test hypotheses about the role of extinction during major environmental changes in their evolutionary history. These analyses support a history of fluctuating species dynamics with two periods of historical species loss in bumblebees. Dating estimates gauge that one of these events started after the middle Miocene climatic optimum and one during the early Pliocene. Both periods are coincident with global climate change that may have extirpated Bombus species. Interestingly, bumblebees experienced high diversification rates during the Plio-Pleistocene glaciations. We also found evidence for a major species loss in the past one million years that may be continuing today.  相似文献   

18.
Understanding the paleoecology of extinct subfossil lemurs requires reconstruction of dietary preferences. Tooth morphology is strongly correlated with diet in living primates and is appropriate for inferring dietary ecology. Recently, dental topographic analysis has shown great promise in reconstructing diet from molar tooth form. Compared with traditionally used shearing metrics, dental topography is better suited for the extraordinary diversity of tooth form among subfossil lemurs and has been shown to be less sensitive to phylogenetic sources of shape variation. Specifically, we computed orientation patch counts rotated (OPCR) and Dirichlet normal energy (DNE) of molar teeth belonging to 14 species of subfossil lemurs and compared these values to those of an extant lemur sample. The two metrics succeeded in separating species in a manner that provides insights into both food processing and diet. We used them to examine the changes in lemur community ecology in Southern and Southwestern Madagascar that accompanied the extinction of giant lemurs. We show that the poverty of Madagascar's frugivore community is a long-standing phenomenon and that extinction of large-bodied lemurs in the South and Southwest resulted not merely in a loss of guild elements but also, most likely, in changes in the ecology of extant lemurs.  相似文献   

19.
AimGlobal animal populations are in decline due to destruction and degradation of their natural habitat. Understanding the factors that determine the distribution and density of threatened animal populations is therefore now a crucial component of their study and conservation. The Cheirogaleidae are a diverse family of small‐bodied, nocturnal lemurs that are widespread throughout the forests of Madagascar. However, many cheirogaleid lemurs are now highly threatened with extinction and the environmental factors that determine their distribution and population density are still little known. Here, I investigated the environmental drivers of Cheirogaleidae population density at genus level.LocationVarious forest sites across Madagascar.MethodsI investigated how six environmental variables affect Cheirogaleidae population density at the genus level via random‐effect meta‐analyses. I then used a generalized linear mixed‐effects model to identify the primary predictors of Cheirogaleidae population density. Finally, I investigated how the population density of this family of lemurs varies between protected and unprotected areas of Madagascar via a GLM analysis.ResultsMy results indicate that the relationships between the tested environmental factors and population density are genus‐specific among the Cheirogaleidae. Rather remarkably, the density of Microcebus appears to have a profoundly positive relationship with anthropogenic disturbance and a negative relationship with forest cover, a finding that is also reflected by larger population densities within unprotected areas in comparison with localities within Madagascar''s protected area network.Main ConclusionsThe results of this study are highly encouraging for the conservation of the Cheirogaleidae and highlight the remarkable resilience of these lemurs to habitat degradation and anthropogenic activity. However, this study also outlines the dearth of knowledge that we have for many species, and why these data are urgently needed to understand the biogeography and ecology of threatened animal populations and implement successful conservation.  相似文献   

20.
The diurnal lemurs Propithecus verreauxi verreauxi and Lemur catta at Berenty in southern Madagascar, have been studied for the last 30 years. The August 1981 census indicates that the population size of L. catta remains stable at 150 adults but that P. v. verreauxi troops have become fragmented and scattered and the population is apparently increasing. Eight different vegetation types were classified within the reserve and their influence on the distribution of L. catta and P. v. verreauxi investigated. Behavioural data obtained shows the niche separation between these two, potentially competitive, sympatric lemurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号