首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown on 3,4,5-trimethoxycinnamic acid, a strain of Pseudomonas putida oxidized this compound and also 3,4,5-trimethoxybenzoic, 3,5-dimethoxy-4-hydroxybenzoic (syringic), and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids, but 3,5-dimethoxy-4-hydroxycinnamic and other acids bearing structural resemblances to the growth substrate were oxidized only slowly. These results indicate that two carbon atoms of the side chain of 3,4,5-trimethoxycinnamate were released before oxidative demethylation occurred to give the ring-fission substrate, 3-O-methylgallate. Oxidation of 3,4,5-trimethoxycinnamate by intact cells gave equimolar amounts of methanol, which was derived from the methoxyl group of 3-O-methylgallate. The tricarboxylic acids, 4-carboxy-2-keto-3-hexenedioic and 4-carboxy-4-hydroxy-2-ketoadipic acids, were shown to be formed by the action of a cell extract upon 3-O-methylgallate; therefore, methanol was released either during or immediately after fission of the benzene nucleus. Cell extracts, prepared from several independent soil isolates after growth on 3,4,5-trimethoxy derivatives of benzoic, cinnamic, and beta-phenylpropionic acids, rapidly oxidized 3-O-methylgallate without added cofactors. It is concluded that the reactions investigated serve generally as a source of methanol in nature.  相似文献   

2.
Brown pigment(s) formed in Cryptococcus neoformans when grown on media containing extracts of the seeds of Guizotia abyssinica cannot be extracted by common organic solvents or by 6 n HCl or 2 n NaOH. A similar pigmentation was observed in C. neoformans when grown on a medium containing caffeic acid isolated from the hydrolyzed methanol extract of G. abyssinica seeds. Its methyl ester and the diacetate thereof, as well as the following structurally related compounds, 3-hydroxytyramine, 3,4-dihydroxybenzoic acid, 3,4-dihydroxyphenylethanolamine, and 4-hydroxy-3,5-dimethoxycinnamic acid, brought about similar pigmentation. However, 2,4-, 2,5-, 2,6-, and 3,5-dihydroxybenzoic acids, tyrosine, phenylalanine, cinnamic acid, 4-hydroxycinnamic acid, and 4-hydroxy-3-methoxycinnamic acid did not cause coloration in C. neoformans.  相似文献   

3.
1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer.  相似文献   

4.
Mitochondrial preparations from rat heart and liver were able to prenylate 3,4-dihydroxybenzoic acid (protocatechuic acid) and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). Rat heart slices when incubated with 3,4-dihydroxy [U-14C] benzoic acid could incorporate the label to ubiquinone. Rat heart slices were also able to convert 4-hydroxybenzoic acid to 3,4-dihydroxybenzoic and 3-methoxy-4-hydroxybenzoic acids, indicating alternate pathways for ubiquinone biosynthesis in mammals.  相似文献   

5.
From the rhizomes of Smilax corbularia Kunth. (Smilacaceae), 11 compounds, (2R,3R)-2″-acetyl astilbin, (2R,3R)-3″-acetyl astilbin, (2R,3R)-4″-acetyl astilbin, (2R,3R)-3″-acetyl engeletin, (2R,3S)-4″-acetyl isoastilbin, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10R)-2H,8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10S)-2H, 8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxy-phenyl)-5-[(1E)-2-(3,4-dihydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, and 5,7,3′,4′-tetrahydroxy-3-phenylcoumarin along with 34 known compounds were isolated and characterized as 19 flavonoids, 14 catechin derivatives, 6 stilbene derivatives, and 6 miscellaneous substances. All isolates had their estrogenic and anti-estrogenic activities determined using the estrogen-responsive human breast cancer cell lines MCF-7 and T47D. The major constituents were recognized as flavanonol rhamnosides by the suppressive effect on estradiol induced cell proliferation at a concentration of 1 μM. Meanwhile, flavanonol rhamnoside acetates demonstrated estrogenic activity in both MCF-7 and T47D cells at a concentration of 100 μM, and they enhanced the effects of co-treated E2 on T47D cell proliferation at concentrations of more than 0.1 μM.  相似文献   

6.
A new lignan 1-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-(3-acetyl-4-hydroxy-5-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, the secoiridoid 2H-pyran-4-acetic acid,3-hydroxymethyl-2,3-dihydro-5-(methoxycarbonyl)-2-methyl-, methyl ester, the phenylglycoside 4-[beta-D-xylopyranosyl-(1-->6)]-beta-D-glucopyranosyl-1,4-dihydroxy-2-methoxybenzene and the lactone 3-[1-(hydroxymethyl)-1-propenyl] delta-glutarolactone were isolated and identified on the basis of spectroscopic data including two-dimensional NMR, as components of olive oil mill waste-waters. The known aromatic compounds catechol, 4-hydroxybenzoic acid, protocatechuic acid, vanillic acid, 4-hydroxy-3,5-dimethoxybenzoic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, tyrosol, hydroxytyrosol, 2-(4-hydroxy-3-methoxy)phenylethanol, 2-(3,4-dihydroxy)phenyl-1,2-ethandiol, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, 1-O-[2-(3,4-dihydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, 1-O-[2-(4-hydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, D(+)-erythro-1-(4-hydroxy-3-methoxy)-phenyl-1,2,3-propantriol, p-hydroxyphenethyl-beta-D-glucopyranoside,2(3,4-dihydroxyphenyl)ethanol 3beta-D-glucopyranoside, and 2(3,4-dihydroxyphenyl)ethanol 4beta-D-glucopyranoside were also confirmed as constituents of the waste-waters.  相似文献   

7.
Anaerobic sewage sludge was used to enrich a methanogenic m-cresol-degrading consortium. 6-Fluoro-3-methylphenol was synthesized and added to subcultures of the consortium with m-cresol. This caused the accumulation of 4-hydroxy-2-methylbenzoic acid. In a separate experiment, the addition of 3-fluorobenzoic acid caused the transient accumulation of 4-hydroxybenzoic acid. Inhibition with bromoethanesulfonic acid caused the accumulation of benzoic acid. Thus, the proposed degradation pathway was m-cresol → 4-hydroxy-2-methylbenzoic acid → 4-hydroxybenzoic acid → benzoic acid. The m-cresol-degrading consortium was able to convert exogenous 4-hydroxybenzoic acid and benzoic acid to methane. In addition, for each metabolite of m-cresol identified, the corresponding fluorinated metabolite was detected, giving the following sequence: 6-fluoro-3-methylphenol → 5-fluoro-4-hydroxy-2-methylbenzoic acid → 3-fluoro-4-hydroxybenzoic acid → 3-fluorobenzoic acid. The second step in each of these pathways is a novel demethylation which was rate limiting. This demethylation reaction would likely facilitate the transformation of the methyl group to methane, which is consistent with the results of a previous study that showed that the methyl carbon of m-[methyl-14C]cresol was recovered predominantly as [14C]methane (D. J. Roberts, P. M. Fedorak, and S. E. Hrudey, Can. J. Microbiol. 33:335-338, 1987). The final aromatic compound in the proposed route for m-cresol metabolism was benzoic acid, and its detection in these cultures merges the pathway for the methanogenic degradation of m-cresol with those for the anaerobic metabolism of many phenols.  相似文献   

8.
The structure of calleryanin (3,4-dihydroxybenzyl alcohol 4-O-β-d-monoglucopyranoside), which occurs in Prunus lusitanica and many Pyrus species, has been confirmed by 1H and 13C NMR analysis and the structure of its benzylic esters with caffeic, protocatechuic and 4-hydroxybenzoic acids verified by catalytical hydrogenolysis. The occurrence of related compounds elsewhere in the plant kingdom is briefly reviewed.  相似文献   

9.
The trunk wood of Iryanthera coriacea Ducke (Myristicaceae) contains six compounds which belong to the recently discovered 1,3-diarylpropane type of flavonoids, 1-(2-hydroxy-4-methoxyphenyl)-3-(3,4-methylenedioxyphenyl)-propane, 1-(2,4-dihydroxyphenyl)-3-(3,4-methylenedioxyphenyl)-propane, 1-(4-methoxyphenyl)-3-(2-hydroxy-4,5-methylenedioxyphenyl)-propane, 1-(4-hydroxy-2-methoxy-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-propane, 1-(2,4-dihydroxyphenyl)-3-(2-methoxy-4,5-methylene-dioxyphenyl)-propane, 1-(2,4-dihydroxy-3,5-methylphenyl)-3-(2-hydroxy-4,5-methylenedioxyphenyl)-propane.  相似文献   

10.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

11.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

12.
Feeding of 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid and 3,4,5-trimethoxycinnamic acid to cell suspension cultures of Vanilla planifolia resulted in the formation of 4-hydroxybenzoic acid, vanillic acid, and syringic acid, respectively. The homologous 4-methoxybenzoic acids were demethylated to the same products. It is concluded that the side chain degrading enzyme system accepts the 4-methoxylated substrates while the demethylation occurs at the benzoic acid level. The demethylating enzyme is specific for the 4-position. Feeding of [O-14C-methyl]-3,4-dimethoxycinnamic acid revealed that the first step in the conversion is the glycosylation of the cinnamic acid to its glucose ester. A partial purification of a UDP-glucose: trans-cinnamic acid glucosyltransferase is reported. 4-Methoxy substituted cinnamic acids are better substrates for this enzyme than 4-hydroxy substituted cinnamic acid. It is suggested that 4-methoxy substituted cinnamic acids are intermediates in the biosynthetic conversion of cinnamic acids to benzoic acids in cells of V. planifolia.  相似文献   

13.
The chemical study of Trilepisium madagascariense has led to the isolation of two previously undescribed compounds, (+)-(2S)-7-hydroxy-3′,4′-dimethoxyflavan (trilepisflavan) and (E)-4-[3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-3-hydroxybenzoic acid (trilepisuimic acid), together with ten known compounds caffeic acid, catechin, erythrodiol-3-O-palmitate, 8-C-glucopyranosylapigenin, dihydrokaempferol, protocatechuic acid, 3′,7-dihydroxy-4′-methoxyflavan, isoliquiritigenin, luteolin and 1,3-dimethoxybenzene. Their structures were elucidated on the basis of spectroscopic evidence. Crude extracts, trilepisflavan, dihydrokaempferol and 8-C-glucopyranosylapigenin showed significant antimicrobial activity.  相似文献   

14.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1–1.9 U mg?1 dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30°C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile ? chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92–100, 70–90 and 30–51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.  相似文献   

15.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O2 or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O2. The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.  相似文献   

16.
1. The ability of a series of compounds to uncouple oxidative phosphorylation of rat-liver mitochondria has been investigated. 2. The compounds were: 2-amino-1,1,3-tricyanopropene; carbonyl cyanide phenylhydrazone and its m-chloro and p-trifluoromethoxy derivatives; 4,5,6,7-tetrachloro-, 5-chloro-4-nitro-, 5-nitro-and 4,5,6,7-tetrachloro-1-methyl-benzotriazole; 4-hydroxy-3,5-di-iodo-, 3,5-di-bromo-4-hydroxy- and 3,5-dichloro-4-hydroxy-benzonitrile; and pentafluorophenol. 3. In a medium the components and physical condition of which were, as far as possible, kept constant, each compound was tested for ability to stimulate adenosine triphosphatase, to stimulate respiration in the presence of pyruvate as substrate, to inhibit phosphate uptake and to prevent swelling by trimethyltin. 4. Each compound was also examined with respect to its ability to produce rapid rigor mortis in mice. 5. The biological properties were compared with the dissociation constant and the hexane–water partition coefficient for each compound. 6. With the exception of 4,5,6,7-tetrachloro-1-methylbenzotriazole, all the compounds behaved qualitatively as 2,4-dinitrophenol. 7. Within each class of compound there is a relation between biological activity and the physical attributes measured. 8. The most efficient uncouplers were the most acidic and the most hydrophobic.  相似文献   

17.
A new lignan, named (—)-massoniresinol, has been isolated from Pinus massoniana needles. Its structure has been proved to be (2R,3S,4R)-3,4-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-(4-hydroxy-3-methoxybenzyl)-3-tetrahydrofuranmethanol by 1H NMR, 13C NMR, mass and CD spectroscopy.  相似文献   

18.
《Aquatic Botany》1986,24(1):83-89
Six phenolic acids were quantitatively assessed in the water-soluble extract of Zostera marina L. (eelgrass) from Puget Sound, Washington, using high-performance liquid chromatography (HPLC). Ferulic (4-hydroxy, 3-methoxycinnamic), vanillic (4-hydroxy, 3-methoxybenzoic), p-hydroxybenzoic (4-hydroxybenzoic), caffeic (3,4-dihydroxycinnamic), gallic (3,4,5-trihydroxybenzoic) and protocatechuic (3,4-dihydroxybenzoic) acids were in suceedingly lower quantities. Gentisic (2,5-dihydroxybenzoic) acid was also found to be present in the extract. However, its quantification was not possible using this method.  相似文献   

19.
It was found that when Rhodotorula rubra IFO 0911 was grown in a phenylalanine medium, benzoic acid and p-hydroxybenzoic acid besides cinnamic acid were formed in the cultured both. The conversions of cinnamic acid into benzoic acid and of benzoic acid into p-hydroxybenzoic acid, and the degradation of p-hydroxybenzoic acid were demonstrated in intact cells of Rhodotorula rubra. These activities were observed in the cells grown on various media, including the medium containing no phenylalanine, and were found to be distributed widely in Rhodotorula. The cells of Rhodotorula rubra were also able to degrade p-coumaric acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), p-hydroxyphenyl-acetic acid, 3-methoxy-4-hydroxycinnamic acid (ferulic acid) and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). From these results, the metabolic pathways for phenylalanine and tyrosine in Rhodotorula were discussed.  相似文献   

20.
Pseudomonas putida U grown in a chemically defined medium containing octanoic acid as the sole carbon source accumulated a homopolymer of poly(3-hydroxyoctanoate) as intracellular reserve material, and metabolized the polymer during the late exponential phase of growth. Kinetic measurement of the uptake of [1-14C]octanoic acid by cells at 34°C in 85 mM phosphate buffer, pH 7.0 showed linear uptake for at least 2 min and the calculated Km and Vmax were 100 μM and 9 nmol min−1 respectively. This transport system is constitutive, energy-dependent, and is strongly inhibited by structural analogs of octanoic acid, by various fatty acids with a carbon length higher than C5 and by certain phenyl derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号