首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.  相似文献   

2.
The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage.  相似文献   

3.
4.
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.  相似文献   

5.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

6.
7.
Experiments on cross infection of peritoneal macrophages of mice with Leishmania of reptiles L. gymnodactyli and free cells of abdominal cavity of caucasian Agama (some part of which is composed by fibroblasts) with Leishmania of mammals L. major and L. donovani have shown the possibility of reproduction of the above species both in reptiles and mammals. The persistence of L. gymnodactyli and L. major in macrophages of mice was traced up to 10 days, the abundance of L. gymnodactyli during the whole period of observations being lower than that of L. major. The abundance of the above Leishmania in these cells happened to be higher than in the cells of reptiles. In the cells of reptiles the infection with these three species of Leishmania was eliminated by 5-6 days. More activity internalization of Leishmania of reptiles into cells of reptiles as compared to Leishmania of mammals was revealed that, apparently, reflects a definite degree of their adaptation to existence in reptiles in vivo.  相似文献   

8.
The in vitro leishmanicidal activity of miltefosine? (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.  相似文献   

9.
Kinetic and phylogenetic analysis of plant polyamine uptake transporters   总被引:1,自引:0,他引:1  
Mulangi V  Chibucos MC  Phuntumart V  Morris PF 《Planta》2012,236(4):1261-1273
The rice gene POLYAMINE UPTAKE TRANSPORTER1 (PUT1) was originally identified based on its homology to the polyamine uptake transporters LmPOT1 and TcPAT12 in Leishmania major and Trypanosoma cruzi, respectively. Here we show that five additional transporters from rice and Arabidopsis that cluster in the same clade as PUT1 all function as high affinity spermidine uptake transporters. Yeast expression assays of these genes confirmed that uptake of spermidine was minimally affected by 166 fold or greater concentrations of amino acids. Characterized polyamine transporters from both Arabidopsis thaliana and Oryza sativa along with the two polyamine transporters from L. major and T. cruzi were aligned and used to generate a hidden Markov model. This model was used to identify significant matches to proteins in other angiosperms, bryophytes, chlorophyta, discicristates, excavates, stramenopiles and amoebozoa. No significant matches were identified in fungal or metazoan genomes. Phylogenic analysis showed that some sequences from the haptophyte, Emiliania huxleyi, as well as sequences from oomycetes and diatoms clustered closer to sequences from plant genomes than from a homologous sequence in the red algal genome Galdieria sulphuraria, consistent with the hypothesis that these polyamine transporters were acquired by horizontal transfer from green algae. Leishmania and Trypansosoma formed a separate cluster with genes from other Discicristates and two Entamoeba species. We surmise that the genes in Entamoeba species were acquired by phagotrophy of Discicristates. In summary, phylogenetic and functional analysis has identified two clades of genes that are predictive of polyamine transport activity.  相似文献   

10.
The successful cultivation of a variety of haemoflagellates in three different liquid media is reported. These media include medium 199, Grace's insect tissue-culture medium and Schneider's drosophila medium, each in combination with 30% (v/v) foetal calf serum. These media were used to cultivate Old and New World species of visceral and cutaneous human Leishmania, as well as Leishmania species isolated from sandflies, rodents, and reptiles. Four strains of Trypanosoma cruzi, an isolate of T. R-angeli and and an isolate of T. lewisi have also been cultivated in these media. One or more of these media have been used to cultivate 121 strains of haemoflagellates, including at least 14 different species (11 Leishmania and 3 Trypanosoma) and many geographic isolates or strains. The Leishmania include L. braziliensis, L. peruviana, L. mexicana, L. tropica, L. donovani, L. chagasi, L. enriettii, L. hertigi, L. hoogstraali, L. adleri, and L. agamae. Using the Schneider's based medium, we have obtained primary isolates of both cutaneous and visceral Leishmania of man and of experimentally infected laboratory rodents and canines. Freeze-dried preparations of the Schneider's based medium that were reconsituted with distilled water after 24 months of storage at ambient temperature have proven to be suitable cultivation media. This feature makes the media valuable field tools. The various species of human Leishmania cultivated in these media have in our experience demonstrated no differences in growth rate, viability after liquid nitrogen preservation, or infectivity for laboratory animals and tissue-culture cells compared with promastigotes derived from blood-agar cultivation.  相似文献   

11.
12.
Extrachromosomal elements in the lower eukaryote Leishmania   总被引:15,自引:0,他引:15  
Extrachromosomal DNA elements have been identified in wild-type populations of the parasitic protozoan Leishmania. Elements from L. major and L. tropica were detected using orthogonal-field-alternation-gel electrophoresis. They are nonhomologous, supercoiled circular DNA molecules derived from different chromosomes in the Leishmania genome. Electron microscopy revealed that the elements have very similar physical properties; both are 80-kilobase supercoiled DNA molecules that contain large inverted repeat structures. The extrachromosomal DNAs are amplified in the Leishmania populations and show a fluctuation in copy number, from undetectable to around 20 copies per cell. After exposure of the L. tropica population to the drug methotrexate (MTX), a second amplified DNA was observed that is homologous to the extrachromosomal DNA found in L. major. Furthermore, wild-type Leishmania populations containing extrachromosomal DNA adapt more readily to MTX selection than populations with no amplified DNA. From these observations, there appears to be a relationship between the presence of extrachromosomal elements in wild-type Leishmania and the genesis and maintenance of MTX resistance in these organisms.  相似文献   

13.
14.
S Brewster  D C Barker 《Gene》1999,235(1-2):77-84
Here we investigate the similarities in the kinetoplastid RNA editing process between human- and lizard-infecting Leishmania species. We present the sequence of the maxicircle-encoded ATPase subunit 6 gene from L. (V.) panamensis, L. (L.) mexicana and L. (L.) donovani species of human-infecting Leishmania. These represent the first available sequences of this gene from Leishmania species other than the lizard-infecting L. tarentolae. The gene sequences are highly conserved, both over the edited and unedited parts of the gene, implying that the RNA editing process is likely to be highly conserved between Leishmania species. Indeed, the first editing domain is absolutely conserved in all three Leishmania species studied and L. tarentolae. A phylogeny based on part of the ATPase subunit 6 gene placed the lizard-infecting Leishmania within the monophyletic Leishmania genus, supporting previous data which suggest that lizard- and human-infecting Leishmania species are closely related.  相似文献   

15.
The genus Leishmania includes many pathogenic species which are genetically very distant. The possibility of genetic exchange between different strains is still an important and debated question. Very few genetic hybrids (i.e., offspring of genetically dissimilar species) have been described in Leishmania. In this study, we report the first example of genetic hybrids occurring between two divergent Leishmania species, Leishmania infantum and Leishmania major. These two species have distinct geographical distributions and are transmitted by different vector species to different mammalian reservoir hosts. These hybrid strains were isolated in Portugal from immunocompromised patients and characterized by molecular and isoenzymatic techniques. These approaches showed that these chimeric strains probably contained the complete genome of both L. major and L. infantum. We believe this is the first report of genetic hybrids between such phylogenetically and epidemiologically distant species of Leishmania. This raises questions about the frequency of such cross-species genetic exchange in natural conditions, modalities of hybrid transmission, their long term maintenance as well as the consequences of these transfers on phenotypes such as drug resistance or pathogenicity.  相似文献   

16.
Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle.  相似文献   

17.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

18.
Monoclonal antibodies have been produced that are specific for the reference stocks of Leishmania mexicana species and subspecies L. mexicana mexicana(L11, M379), L. mexicana amazonensis (WR303, H6, LV72), and L. mexicana pifanoi (L20). The specificities of these antibodies were confirmed by analyses employing an indirect radioimmune binding assay and 107 stocks of New World Leishmania. The molecules associated with these species- and subspecies-specific determinants have been characterized by Western blot analysis and consist of mainly low m.w. (11,000 to 50,000) membrane-associated components.  相似文献   

19.
Previously, tubulin has been purified from Leishmania amazonensis and used to identify novel molecules with selective antimitotic activity. However, L. amazonensis is pathogenic and requires a relatively expensive medium for large-scale cultivation. Herein, the purification and characterization of tubulin from the non-pathogenic Leishmania tarentolae is reported, together with the sequence of alpha- and beta-tubulin from this organism. This protein was purified by sonication, diethylaminoethyl-Sepharose chromatography, and one assembly disassembly cycle in 1% overall recovery based on total cellular protein. Leishmania tarentolae tubulin was indistinguishable from the corresponding L. amazonensis protein in terms of binding affinity for dinitroaniline sulfanilamides and sensitivity to assembly inhibition by these compounds. The amino acid sequences derived from the L. tarentolae alpha- and beta-tubulin genes were 99.6 and 99.4% identical to the corresponding amino acid sequences from the Leishmania major Friedlin strain. These results indicate that tubulin from L. tarentolae is suitable for use in drug screening.  相似文献   

20.
Brobey RK  Soong L 《Proteomics》2007,7(1):116-120
The recent completion of genome sequencing projects for Leishmania major and near completion for two other species, L. infantum and L. braziliensis, has provided the needed genomic information for investigating the proteomes of Leishmania parasites. However, the design of effective 2-DE-based proteome mapping for complex protozoan parasites like Leishmania has proven to be severely compromised due to extensive overcrowding of spots especially in the acidic regions, coupled to a relatively low representation of basic proteins. In the present study, we optimized a liquid-phase IEF in combination with 2-DE for L. amazonensis promastigote as a way of reducing protein complexity and enhancing representation for low-abundance proteins on gels. Of 20 pH-based fractions eluted from Rotofor cells, 5 representative fractions selected from acidic, basic or neutral regions of the proteome and with adequate protein concentration were further analyzed by 2-DE using medium-range IPG strips. On this basis, we were able to generate high-resolution 2-DE maps encompassing both the acidic and basic ends of the proteome with enhanced spot representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号