首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The effect of a number of amino acids on the transparency and on the release of of [14C]glutamate from isolated chicken retinae charged with this compound was investigated. Also the effect of various amino acids on the response of the retina to stimulation with unlabelled glutamate, which causes an increase in transparency and a release of the label, was examined. In parallel experiments the effect of these same amino acids on the transparency and spreading depression (SD) was investigated in preparations consisting of the posterior part of the eye. A number of amino acids such as L-leucine, L-phenylalanine, L-tryptophan, L-lysine, L-histidine, L-arginine and others had little or no effect on these preparations. DL-valine and DL-homoserine caused an increase in transparency but no release of the label and did not affect the response to glutamate. Another group of amino acids comprising DL-a-alanine, L-serine, L-threonine, L-proline and glycine also caused an increase in the transparency of the retina without a release of labelled glutamate, but prevented the increase in transparency resulting from glutamate stimulation without affecting the release of the label. A final group of amino acids which included L-glutamic acid diethyl ester, DL-a-methyl glutamate, L-glutamine, L-asparagine, DL-homocysteate and L-cysteine caused a change in transparency of the retina accompanied by a release of the label; they prevented the change in transparency as well as the release of the label during stimulation by glutamate. Some amino acids, L-serine, L-threonine, DL-a-methyl glutamate, L-asparagine, DL-homocysteate and L-cysteine, caused wrinkling and folding of the retinae which furthermore became opaque. Of the amino acids investigated, proline gave promise of being a practical antagonist to the action of glutamate on the retina.  相似文献   

2.
Slices of guinea-pig cerebral cortex were used to investigate the effects of the antispastic drug β-(p-chlorophenyl)-γ-aminobutyrate (Baclofen, Lioresal) on the release and metabolism of several amino acids. Electrical stimulation of slices evoked (1) a relatively large release, probably from nerve terminals, of 14C-labelled tissue glumate, aspartate and γ-aminobutyrate (GABA) synthesized via metabolism of D-[U-14C]glucose and (2) a relatively small release, probably not from nerve terminals, of 14C-labelled tissue alanine and threonine-serine-glutamine and of exogenous radiolabeled glutamate, aspartate, GABA and α-aminoisobutyrate that had been taken up from the medium. Baclofen (4μM) preferentially inhibited the release of 14C-labelled tissue glutamate and aspartate. It had no effect on the concentrations and specific radio-activities of most of the labelled tissue amino acids in the slices. However, it increased the turnover of 14C-labelled tissue glycine approx 4-fold and elevated the specific radio activity of tissue alanine by 40%. It was concluded that Baclofen affects transmission not by modulating the release of the inhibitory amino acid GABA, but by selectively suppressing the release of the excitatory amino acids glutamate and aspartate from nerve terminals. Provided that this action obtains in the spinal cord, it may at least partly underlie the antispastic action of Baclofen as glutamate and aspartate are presumed to be the transmitters released from terminals of non-nociceptive primary afferent fibers and excitatory interneurons, respectively. The Baclofen-induced increase in glycine turnover suggests an additional effect on inhibitory glycinergic interneurons in the spinal cord.  相似文献   

3.
The effect of the glutamate antagonist alpha-amino-4-phosphonobutyrate (APBA) on the release of endogenous amino acids from sensorimotor cortical synaptosomes of rats with a cortical cobalt focus and from non-epileptic rats was studied: (1) The release of endogenous glutamate, aspartate, and gamma-aminobutyric acid (GABA) from synaptosomal preparations of cobalt-induced epileptogenic tissues was increased compared with the release from the contralateral (sensorimotor) region or the sensorimotor cortex of normal animals. The intrasynaptosomal content of these amino acids was reduced in proportion to the amount released. The levels of other amino acids were unaffected or showed much smaller changes. (2) APBA (0.5-1 mM) decreased significantly the spontaneous release of aspartate and glutamate from the epileptic foci without affecting GABA or any other amino acid. (3) APBA produced no effect whatsoever on the release of any amino acid from synaptosomal preparations of nonepileptic focus.  相似文献   

4.
Rat brain homogenate preparations exhibited two types of glutamine binding, one a high-affinity (K1 = 0.2 μM) and the other a low-affinity type (K2 = 4.4 μM). The high-affinity binding was primarily associated with the plasma membrane subcellular fractions and in particular with the synaptic membrane subfraction. This l-glutamate binding was found to be strongly stereospecific for the l-form and was almost totally reversible. The synaptic membrane glutamate binding was partialy inhibited by neuro-excitatory and neuro-inhibitory amino acids but was not affected by amino acids lacking in neuropharmacologic activity. The membrane-associated l-glutamate binding system could be solubilized by Triton X-100 without loss of its high-affinity binding activity. The chemical nature of this glutamate binding component was found to be that of a glycolipoprotein. It is proposed that this glutamate binding system represents the physiologic receptor on neuronal membranes of this amino acid.  相似文献   

5.
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity.  相似文献   

6.
We have previously published data on the analysis of glutamate in microdialysis samples using a commercially availble CE apparatus. Here we demonstrate further improvements in the analysis of both glutamate and aspartate from very small volume microdialysates. The limit of detection of our system has been increased to 10−9 M for both glutamate and aspartate. This permits microdialysis sampling time to be reduced to 2 min, thus improving the temporal resolution of microdialysis sampling. Concurrently, migration time has also been reduced such that resolution of both amino acids can be achieved inside 2 min. This new analytical method has been applied to the measurement of the EAA from microdialysis samples from the dentate gyrus of the hippocampus. Extracellular concentrations of both glutamate and aspartate increased to a maximum of 5- and 4.5-fold of preinfusion values, respectively, during infusion of 100 mM K+ through the microdialysis probe. This is consistent with the depolarization-evoked release of both amino acids from this brain region.  相似文献   

7.
Abstract— Tetrodotoxin, Ca2+-deprivation and high-Mg2+ were used in an effort to identify the portion of the evoked release of endogenous amino acids, labelled via metabolism of [14C]-glucose, and several exogenous labelled amino acids, that came from nerve terminals when slices of guinea pig cerebral cortex were superfused with glucose-free solutions and stimulated electrically. With some exceptions, spontaneous release of labelled amino acids was decreased by 2 μm -tetrodotoxin but increased in Ca2+-free medium and in solutions containing an extra 24 mm -MgCl2. Tetrodotoxin suppressed 85–90% of the stimulated release of almost all labelled amino acids, but had a smaller effect on the release of endogenous 14C-labelled threonine-serine-glutamine (unseparated). In Ca2+-free solution, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 80–90%, but that of endogenous 14C-labelled threonine-serine-glutamine was unaffected as was most of the release of the other labelled amino acids. In medium containing an extra 24mM-MgCl2, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 75-85%, that of exogenous labelled aspartate and GABA by 50–65%, but the release of the other labelled amino acids was unaffected. The control stimulated releases of endogenous 14C-labelled glutamate, aspartate and GABA were much larger than those of other labelled amino acids but were reduced by tetrodotoxin, Ca2+-deprivation and high-Mg2+ to a level similar to that of the control stimulated releases of the other labelled amino acids. These results suggest that almost all of the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA came from nerve terminals while those of the other labelled amino acids came from other tissue elements. In addition, they are in accord with a transmitter role for glutamate, aspartate and GABA in cerebral cortex.  相似文献   

8.
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration.  相似文献   

9.
Abstract: The effect of anoxia and ischemia on the release of amino acid transmitters from cerebellar slices induced by veratridine or high [K+] was studied. Synaptic specificity was tested by examining the tetradotoxin (TTX)-sensitive and the Ca2+-dependent components of stimulated release. Evoked release of endogenous amino acids was investigated in addition to more detailed studies on the stimulated efflux of preloaded [14C]GABA and d -[3H]aspartate (a metabolically more stable anologue of acidic amino acids).[14C]GABA release evoked by either method of stimulation was unaffected by periods of up to 35 min of anoxia and declined moderately by 45 min. In contrast, induced release of d -[3H]Asp increased markedly during anoxia to a peak at about 25 min, followed by a decline when anoxia was prolonged to 45 min. Evidence was obtained that the increased evoked efflux of d -[3H]Asp from anoxic slices was not due to impaired reuptake of the released amino acid and that it was completely reversible by reoxygenation of the slices. Results of experiments examining the evoked release of endogenous amino acids in anoxia were consistent with those obtained with the exogenous amino acids. Only 4 of the 10 endogenous amino acids studied exhibited TTX-sensitive veratridine-induced release under aerobic conditions (glutamate, aspartate, GABA, and glycine). Anoxia for 25 min did not affect the stimulated efflux of these amino acids with the exception of glutamate, which showed a significant increase. Compared with anoxia, effects of ischemia on synaptic function appeared to be more severe. Veratridine-evoked release of [14C]GABA was already depressed by 10 min and that of d -[3H]Asp showed a modest elevation only at 5 min. Stimulated release of d -Asp and labelled GABA declined progressively after 5 min. These findings were compared with changes in tissue ATP concentrations and histology. The latter studies indicated that in anoxia the earliest alterations are detectable in glia and that nerve terminals were the structures by far the most resistant to anoxic damage. The results thus indicated that evoked release of amino acid transmitters in the cerebellum is compromised only by prolonged anoxia in vitro. In addition, it would appear that the stimulated release of glutamate is selectively accentuated during anoxia. This effect may have a bearing on some hypoxic behavioral changes and, perhaps, also on the well-known selective vulnerability of certain neurons during hypoxia.  相似文献   

10.
Amino acid neurotransmitters in the nucleus tractus solitarius (NTS) are thought to play a key role in the mediation of visceral reflexes and glutamate has been proposed as the neurotransmitter of visceral afferent nerves projecting to this region. The present studies sought to characterize the use of in vivo microdialysis to examine extracellular fluid levels of amino acids in the NTS of anesthetized rats. Using a microdialysis probe that was 450 μm in length and a sensitive HPLC assay for amino acids, amino acids could be measured in dialysate samples collected from the NTS. Perfusion of the microdialysis probe with 60 mM K±, to elicit depolarization of nerve terminals in the vicinity of the probe, resulted in increased dialysate fluid levels of aspartate, glutamate, glycine, taurine, and GABA. In contrast, glutamine and tyrosine were decreased and other amino acids were not significantly affected. Prior removal of the ipsilateral nodose ganglion did not alter the K±-evoked changes in dialysate levels of any of these amino acids. Electrical stimulation of the vagus nerves, using a variety of stimulus parameters, did not significantly alter dialysate levels of glutamate or any of the other amino acids that were measured. Blockade of glutamate uptake with dihydrokainate increased dialysate levels of glutamate, aspartate, and GABA, but in the presence of dihydrokainate vagal stimulation did not alter dialysate levels of these amino acids. The results show that in vivo microdialysis can be used to examine amino acid efflux in the rat NTS and provide further evidence for amino acidergic neural transmission in the NTS. However, these studies fail to support the hypothesis that vagal afferents release glutamate or aspartate.  相似文献   

11.
The properties of l-[3H]glutamate release with an emphasis on the modulation by inhibitory amino acids of the potassium-induced release were studied with cerebellar granule cells from 7-day-old rats cultured for 7 or 14 days. Spontaneous glutamate release from cells grown for 7 days was fast, being slightly enchanced in Na+-free medium. l-Glutamate, kainate and quisqualate stimulated the release whereas N-methyl-d-aspartate and taurine were without any effect. The potassium-evoked glutamate release was Ca2+-dependent and potentiated by l-glutamate and quisqualate. Stimulated release was strongly depressed by glutamatediethylester. This inhibition was antagonized by GABA but not by taurine. GABA and its structural analogues taurine, hypotaurine, β-alanine and glycine were all equally effective in depressing stimulated glutamate release. The inhibition by GABA could be blocked by GABA antagonist. Both K+-evoked release and the kainate-induced release of glutamate were significantly greater in 14-day-old than in 7-day-old cultures, but the other properties of release were similar. The demonstration of calcium-dependent and potassium-stimulated glutamate release from cerebellar granule cells is consonant with the proposed neurotransmitter role of glutamate in these cells. The release could be modulated by both glutamatergic substances and inhibitory amino acids, the effect of GABA probably being mediated by GABAergic receptors.  相似文献   

12.
A yeast glutamate auxotroph (glt1 − 1), blocked in the tricarboxylic acid cycle at aconitase, is shown to possess catabolic pathways to glutamate from proline, arginine and glutamine, and grows on any of these amino acids in a minimal medium. This mutant does not, however, grow on these amino acids in a medium containing the full complement of common amino acids minus glutamate. The mechanism of this growth failure involves partial inhibition of the catabolic routes to glutamate by more than half the common amino acids. In the case of proline catabolism, this inhibition is localized principally at the enzyme Δ1-pyrroline-5-carboxylate: NAD(P)+ oxidoreductase by in vitro studies. Similar results with this enzyme prepared both from yeast and from beef kidney mitochondria suggest that the inhibition observed may be the basis of a regulatory mechanism of general significance.  相似文献   

13.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

14.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

15.
Glutamate plays a central role in nitrogen flow and serves as a nitrogen donor for the production of amino acids. In plants, some amino acids work as buffers: during photorespiration, ammonium derived from the conversion of glycine to serine is promptly reassimilated into glutamate by the glutamine synthetase (GS-2)/ferredoxin-dependent glutamate synthase (Fd-GOGAT) cycle. The glutamate concentration is relatively stable compared with those of other amino acids under environmental changes. The few studies dealing with glutamate homeostasis have but all used knockouts or mutants of these enzymes. Here, we generated Fd-GOGAT (GLU1)-overexpressing Arabidopsis plants to analyze changes in the amino acid pool caused by glutamate overproduction under different ammonium conditions controlled by CO2 concentration, light intensity and nitrate concentration. Under photorespiratory conditions with sufficient ammonium supply, aspartate increased and glutamine and glycine decreased, but glutamate barely changed. Under non-photorespiratory conditions, however, glutamate and most other amino acids increased. These results suggest that the synthesized glutamate is promptly converted into other amino acids, especially aspartate. In addition, ammonium supply by photorespiration does not limit glutamate biosynthesis, but glutamine and glycine are important. This study will contribute to the understanding of glutamate homeostasis in plants.  相似文献   

16.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

17.
We examined diel trends in internal pools and net efflux of free amino acids in colonies of the nonheterocystous, diazotrophic cyanobacterium Trichodesmium thiebautii, freshly collected from waters of the Caribbean and the Bahamas. The kinetics of glutamate uptake by whole colonies were also examined. While intracolonial pools of most free amino acids were relatively constant through the day, pools of glutamate and glutamine varied over the diel cycle, with maxima during the early afternoon. This paralleled the daily cycle of nitrogenase activity. We also observed a large net release of these two amino acids from intact colonies. Glutamate release was typically 100 pmol of N colony-1 h-1. This is about one-fourth the concurrent rate of N2 fixation during the day. However, while nitrogenase activity only occurs during the day, net release of glutamate and glutamine persisted into the night and may therefore account for a greater loss of recently fixed N on a daily basis. This release may be an important route of new N input into tropical, oligotrophic waters. Whole colonies also displayed saturation kinetics with respect to glutamate uptake. The Ks for whole colonies varied from 1.6 to 3.2 μM, or about 100-fold greater than typical ambient concentrations. Thus, uptake systems appear to be adapted to the higher concentrations of glutamate found within the intracellular spaces of the colonies. This suggests that glutamate may be a vehicle for N exchange among trichomes in the colony.  相似文献   

18.
In previous studies we have shown that the depolarization-induced release of preaccumulated acidic amino acids and newly synthesized glutamate from cerebellar synaptosomal preparations is potentiated by γ-aminobutyric acid (GABA) agonists through a GABAergic presynaptic mechanism. Here we report a systematic analysis of the ionic requirements of the potentiating effect of muscimol on the high K+-evoked release of d-[3H]aspartate. Our studies show that: Ca2+, Na+, and Mg2+ are not required for muscimol to exert its effect; a depolarizing concentration of K+ is a necessary, but not sufficient, condition to observe the presynaptic effect in question; and a minimal Cl- concentration (50–70 mM) is also required. A possible model based on these findings is proposed.  相似文献   

19.
P. Strasser  G. Falkner 《Planta》1986,168(3):381-385
The permeability properties of the cell membrane of a symbiotic Nostoc sp. for glutamate and aspartate were investigated. These compounds were translocated across the plasmalemma by a transport system which showed a very high affinity for glutamate and a lower one for aspartate. Since a concomitant release of glutamate was observed during the uptake of these two amino acids it is concluded that the transport proceeds via a counterexchange mechanism. In addition to this counterexchange a net release of glutamate occurred in the dark. Some aspects concerning the possible function of this transport system in the symbiotic association Geosiphon pyriforme are discussed.  相似文献   

20.
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号