首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insights into how exactly a fly powers and controls flight have been hindered by the need to unpick the dynamic complexity of the muscles involved. The wingbeats of insects are driven by two antagonistic groups of power muscles and the force is funneled to the wing via a very complex hinge mechanism. The hinge consists of several hardened and articulated cuticle elements called sclerites. This articulation is controlled by a great number of small steering muscles, whose function has been studied by means of kinematics and muscle activity. The details and partly novel function of some of these steering muscles and their tendons have now been revealed in research published in this issue of PLOS Biology. The new study from Graham Taylor and colleagues applies time-resolved X-ray microtomography to obtain a three-dimensional view of the blowfly wingbeat. Asymmetric power output is achieved by differential wingbeat amplitude on the left and right wing, which is mediated by muscular control of the hinge elements to mechanically block the wing stroke and by absorption of work by steering muscles on one of the sides. This new approach permits visualization of the motion of the thorax, wing muscles, and the hinge mechanism. This very promising line of work will help to reveal the complete picture of the flight motor of a fly. It also holds great potential for novel bio-inspired designs of fly-like micro air vehicles.The ability for powered flight has evolved four times in the animal kingdom and, thanks to their ability to fly, insects have diversified and moved into new regions and habitats with enormous success [1]. Powered flight requires an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings, and a control system to modulate power output from the muscles. Insects are bewilderingly diverse with respect to flight morphology and behaviors, which in turn provides a real challenge to researchers wishing to understand how insects fly. In particular, the impressive flight maneuvers in flies, such as blowflies and fruit flies, have inspired scientists for many years [2]. The ability of a fly to accelerate, make tight turns, rolls, and loops that allow the creature to land upside down on a ceiling is unparalleled in any other organisms, as well as any manmade aircraft. Everybody knows how difficult it is to swat a fly with bare hands—the fly''s capacity for rapid take-off and accurate movement away from a perceived approaching threat is exquisite [3].The flight muscles of many insects, including flies, bees, and mosquitoes, are divided into a few large power muscles that simply contract cyclically to generate sheer power output and a greater number of smaller steering muscles that control the force transmission from the power muscles to the wing [4][6]. The power muscles of a fly consist of two sets of antagonistic muscles attached to the inside of the thorax (exoskeleton) (Figure 1). In many insects, including flies, these muscles are asynchronous, which means their contractions are uncoupled to the firing rate of the associated motor neuron [6],[7], i.e., the muscles continue to contract as long as the nerve tickles them. Another characteristic feature of the power muscles is that they are stretch-activated and contract as a response to being lengthened. Both sets of power muscles deform the thorax when contracted such that when the dorso-ventral muscles contract, the thorax is squeezed together dorso-ventrally while expanding longitudinally, and vice versa when the dorsal-longitudinal muscles contract as a response to prior lengthening. The result is an alternate contraction and lengthening of these perpendicular muscle groups and a resonance of the entire thorax that drives the wingbeat. Typical wingbeat frequencies are in the range from 100 Hz and even up to 1,000 Hz in the smallest species [5],[8].Open in a separate windowFigure 1The thorax with and dorsal longitudinal (upper left) and dorso-ventral (upper right) power flight muscles of a fly.The cartoon (bottom) shows a transverse section through the thorax with dorso-ventral muscles (DVM) and dorsal longitudinal muscles (DLM) indicated. The two upper illustrations are redrawn from [6].The forces from the flight muscles are transmitted to the wing through an intricate hinge mechanism (Figure 2). The hardened plates of cuticle between the thorax and wing (sclerites) are mobile and their positions relative to the thoracic outgrowths and wing determine the extent of the wing motion, i.e., the angular amplitude of the wingbeat [6].Open in a separate windowFigure 2Cartoon illustration of a transverse section of the thorax of a fly in rear view, showing some elements of the complex wing hinge of a fly, consisting of ridges and protrusions on the thorax and a number of hardened plates of cuticle (sclerites) between the body (thorax) and the wing root.The basalare sclerite (not shown) is positioned anterior of the first axillary sclerite (Ax1). The indicated structures are dorso-ventral power muscle (DVM), pleural wing process (PWP), post-medial notal process (PMNP), parascutal shelf (PSS), axial wing sclerites (Ax1, Ax2, Ax3), and radial stop (RS). Redrawn and modified from [18].Flight maneuvers arise owing to asymmetric force generation between the left and right wing. Aerodynamic force is proportional to the angle of attack (the angle between the wing surface and the airflow) and the speed squared relative to the air [9],[10]. Except from the turning points of each half-stroke, when the wings rotate about their span wise axes, the angle of attack is usually quite constant during the translational phases of the wingbeat [10], while asymmetric forces are mainly created by changing the wingbeat amplitude in flies [11][14]. With wingbeat frequency kept constant, changed amplitude changes the speed and hence force generated.The control of the elements forming the hinge mechanism of the wing is achieved by the steering muscles, which are tiny in terms of mass (<3% of the power muscle mass), but mean everything when it comes to making flight maneuvers. In contrast to the power muscles the steering muscles are synchronous, i.e., there is a 1∶1 correspondence between neural spikes and muscle contraction. No less than some 22 pairs of steering muscles are involved in the force transmission; a few of these indirectly modulate the output by affecting the resonating properties of the thorax, while others are directly attached to the sclerite elements of the hinge mechanism [6],[15]. Three small muscles (b1–b3) are attached to the basalare plate that is directly involved in wing articulation (Figure 3). The actual wing sclerites (Figure 2) are also controlled by specific steering muscles, also with the function of moving the sclerites in relation to required wing motion. The main control function of the hinge mechanism appears to be of the downward movement of the wing, i.e., the angle at the turning point at end of downstroke. For a detailed review about the steering muscles and their function see Dickinson and Tu [6].Open in a separate windowFigure 3The position of the three steering flight muscles b1–b3 inserted to the nail-shaped basalare sclerite.Contraction by the b1 and b2 muscles move the basalare forward and their antagonist b3 moves it backwards when contracted. Redrawn from [6].To date, the function of the steering muscles has been revealed mainly by electrophysiological studies on tethered subjects. Tethering means that the animal is glued to the end of a thin rod, often with force sensors attached to it, and then stimulated to “fly.” In many insects this can be achieved by simply blowing at them or placing them in a wind tunnel. On the tether the insect can either be presented with a visual stimulus or be rotated, which flies can sense via their halteres (hind wings modified to sensory gyroscopic sensory organs) [16]. By inserting electrode wires into the steering muscles, the neural impulses are measured at the same time as the wingbeat kinematics is recorded [13],[17]. What we know about the function of the steering muscles comes from the meticulous studies of correlations between muscle activity and the associated wing movement, including how the hinge mechanism works [6],[18]. Needless to say, such experiments are extremely difficult to achieve in small insects like blowflies and fruit flies that flap their wings at high frequencies. Recent studies of the wing and hinge kinematics provide some support for the hypothesis that the hinge may have a gear function that affects stroke amplitude, as well [18]. However, there are still many open questions regarding the exact function of the steering muscles and how they help in generating laterally asymmetric forces during a fly''s flight maneuver [6].In an article published in this issue of PLOS Biology, Walker and colleagues take a new approach for studying how steering muscles regulate the power output from power muscles [19], using time-resolved x-ray microtomography [20]. By rotating tethered blowflies (Calliphora vicina) in the X-ray beam, a 3D-movie was captured that shows how the steering muscles move. This by itself is a grand achievement at a wingbeat frequency of 145 Hz. As the flies could sense being rotated the steering muscles acted accordingly to achieve an asymmetric power output as a response to a perceived turn. The movies that accompany the article show how several of the key steering muscles and their sclerites operate in concert during the course of a wingbeat, and the visual results are supported by advanced statistical analyses of muscle strain rates and their phase offset. For example, the b1 and b3 muscles (Figure 3) work antagonistically, as was known before, but on the low-amplitude wing the oscillations are delayed by about a quarter of a wingbeat. The strain amplitudes of b1 and b3 were different between the two wings, which were found to be due to dorso-ventral movement of the basalare sclerite on the high-amplitude side and rotation on the low-amplitude side. This shows even higher complexity of the wing hinge than was previously envisaged.The measurements of strain rate in the muscle confirmed the results of a previous study, which showed that asymmetric power output is partially achieved by negative work [21], i.e., absorption of work, by the b1 muscle on the low-amplitude wing. As with other muscles, the steering muscles insert on the skeletal parts and sclerites by tendons. The tendon of the muscle (I1) associated with the first axillary sclerite was observed to buckle when the wing was elevated above the wing hinge, indicative of compressive force acting on it near the top of the wing stroke. This buckling of the tendon forces a reinterpretation of the function of this muscle: it is involved in reducing stroke amplitude at the bottom of the downstroke rather than exerting stress near the opposite end of the stroke. Tendon buckling was seen in some other muscles as well, and although this is its first observation, it may be a more general mechanism involved in control of insect wingbeat kinematics.What are the wider implications of this new study? First, it demonstrates the utility of a new approach to examine the in vivo operation of several insect flight muscles. This alone signals a methodological breakthrough that promises more. So far the flies were tethered and studied during one behavioral treatment (rotation about the yaw axis). Real flight maneuvers, however, also involve angular rotation about pitch and roll axes, acceleration, and braking. Thus, it remains to be seen how the steering muscles operate to control more subtle changes in wing kinematics during the turning saccades and advanced flight maneuvers that take place during free flight. The method involved exposure to lethal X-ray doses, which of course limits how long the experiments can be. Second, tethering is the prevailing paradigm for studying insect flight, but because it interrupts the sensory feedback loop [22], it would be useful for future studies to compare tethered and free flight in some commonly studied species. Furthermore, a more complete understanding of the flight muscle-hinge mechanism may help bio-inspired design of wing articulation systems for fly-like micro air vehicles. Until then, we can enjoy the stunning videos of the oscillating thorax and flight muscle system of the blowfly [19]. See the video from the related research article here (http://youtu.be/P6lBkK3J9wg) or [19].  相似文献   

2.
Calcium-Dependent Myosin from Insect Flight Muscles   总被引:2,自引:0,他引:2       下载免费PDF全文
Calcium regulation of the insect actomyosin ATPase is associated with the thin filaments as in vertebrate muscles, and also with the myosin molecule as in mollusks. This dual regulation is demonstrated using combinations of locust thin filaments with rabbit myosin and locust myosin with rabbit actin; in each case the ATPase of the hybrid actomyosin is calcium dependent. The two regulatory systems are synergistic, the calcium dependency of the locust actomyosin ATPase being at least 10 times that of the hybrid actomyosins described above. Likewise Lethocerus myosin also contains regulatory proteins. The ATPase activity of Lethocerus myosin is labile and is stabilized by the presence of rabbit actin. Tropomyosin activates the ATPase of insect actomyosin and the activation occurs irrespective of whether the myosin is calcium dependent or rendered independent of calcium.  相似文献   

3.
Ultrastructural examination of crayfish superficial (tonic)and deep (phasic) abdominal extensor muscles reveals a distributionand quantitative difference in glycogen between these muscles.Both superficial and deep fibers have a dense accumulation ofglycogen in the interfibrillar sarcoplasm. In addition, thesuperficial extensors, but not the deep extensors, contain glycogenin the I band region. The glycogen granules are of the ßtype and can be removed enzymatically. The superficial medialand lateral fibers contain more glycogen than the medial andlateral deep fibers. A possible functional role for this differenceis suggested.  相似文献   

4.
In migrating lepidopteran and orthopteran insects, lipid is the preferred fuel for sustained flight activity. Diacylglycerol is delivered by lipophorin to the flight muscle and hydrolyzed to free fatty acid and glycerol. After penetrating the plasma membrane by an unknown mechanism, fatty acids are bound by the intracellular fatty acid binding protein (FABP) and transported through the cytosol. After their conversion to acyl-CoA esters, the fatty acids enter the mitochondrial matrix via the carnitine shuttle for subsequent β-oxidation. This article reviews the current knowledge of lipid metabolism in insect flight muscle, with particular emphasis on the structure and function of FABP and its expression during locust development and flight.  相似文献   

5.
Isolated auricles or ventricles from the frog continue to contract, either spontaneously or when stimulated, for from 2 to 4 hours after they are placed in isotonic sucrose solution. After the muscles stop contracting in sucrose solution, contractility is partially restored when the muscles are placed in chloride Ringer's. However, contractility is usually not restored if the muscles are placed in sulfate Ringer's. Ventricles soaked in sucrose solution at 4–7°C continue to contract for 12 to 24 hours and during the first few hours in sucrose solution the contractions often are enhanced. Several types of experiment indicate that the sucrose solution does replace the Ringer's in the extracellular space. Auricles and ventricles also continue to conduct action potentials, with an overshoot, for from 30 to 360 minutes after being placed in sucrose solution. Muscles soaked in sucrose until they are inexcitable rapidly recover in chloride Ringer's but often fail to recover in sulfate Ringer's. The results are discussed in relation to theories about the generation of the action potential in cardiac muscle, and the role of the extracellular fluid in contraction.  相似文献   

6.
Comparative energetics of chicken latissimus dorsi muscles, tonic anterior (ALD) and phasic posterior (PLD), were investigated by measuring initial heat production. Heat components were analyzed in terms of the equation: E = A + W + αF(L) + f(P, t) As the muscles were stretched by increments, heat produced in isometric twitches and tetani decreased in a linear fashion. Two processes are involved: one tension independent, the activation heat, or A; and the other tension dependent, Wi + αF(L) + f(P, t). In twitches, A, per unit tension, is equivalent in the PLD and ALD. Tension-dependent heat, per unit tension, is greater in the PLD due to Wi; but tension-time-related heat, f(P, t), per unit tension, is similar in both muscles. In tetanic contractions, differences in A and f(P, t), per unit tension, are attributed to the greater Vmax in the PLD. The differences in the energetics of isometric contractions in the PLD and ALD, therefore, can be explained by inherent differences in tension development, compliance, and myosin and reticular ATPase activities. Data from isotonic twitches were quantified by means of the equivalent tension technique. Both muscles exhibited an extra heat associated with shortening, αF(L). In the PLD, the ratio αF/Pot is greater; it is load independent and ½ the value of a/Po in both muscles. Enthalpy efficiency, We + Wi/E, is comparable in both muscles. A Fenn effect is observed only when isotonic energy liberation is compared to a decreasing isometric energy expenditure base line.  相似文献   

7.
Isolation and Contraction of the Stress Fiber   总被引:7,自引:5,他引:7       下载免费PDF全文
Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle.  相似文献   

8.
Different insect muscles have been studied with the electronmicroscope and the distribution of the two kinds of myofilamentscompared. In muscles other than those of flight, each thickfilament is surrounded by 9–12 thin filaments, whereas,in the flight muscles, the contraction frequency of which ismuch higher, there are only 6 thin filaments surrounding eachthick one; nevertheless, in the flight muscles of some butterflies,the wing stroke frequency of which is particularly low, thereare 7–9 thin filaments. It seems then that there may bea relation between the ratio of the two kinds of myofilamentsand the frequency of muscular contraction. In the muscles which have more than 6 thin filaments surroundingeach thick one, the structure of the 7, line appears to be differentfrom that which was described in dipteran flight muscles. Apeculiar aspect of the M line is observed in lepidopteran flightmuscles.  相似文献   

9.
Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle.  相似文献   

10.
SYNOPSIS. Three locomotory muscles of adult male cockroacheshave been biochemically and structurally compared. All fibersof two muscles are innervated by the same motoneuron; both musclesare monofunctional—used only in running. Fibers of thethird muscle are also innervated by a single, but differentmotoneuron. This muscle is bifunctional— used in bothwalking and flying. Histochemical observations of enzymes associatedwith energy production indicate that the three muscles are eachcomprised of a homogeneous population of fibers. However, qualitativedifferences do correlate with muscle use. The bifunctional muscleshows high oxidative and glycolytic enzyme localization; themonofunctional muscles show a low profile for these enzymes.Quantitative determinations of specific activity for similarenzymes corroborate the histochemical observations. Light andelectron microscope observations also indicate that fibers fromeach of the two muscle groups are structurally homogeneous anddistinct. The two monofunctional muscles parallel one anotherfor all structures examined and are different from the bifunctionalmuscle. The bifunctional muscle fibers have cross-sectionalareas twice that of the monofunctional muscles, have a greatermyofibrillar diffusion distance, and have about half as manyactin per myosin filaments. Stereometric analyses show volumedensities for mitochondria and tracheoles to be five times greater;membrane systems associated with excitation- contraction coupling,however, are half as extensive; and myofibrillar volume about1.3 times less. These data form the basis for studies of denervationand cross-reinnervation, and the role of individual motoneuronsin specifying muscle fiber properties.  相似文献   

11.
We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.  相似文献   

12.
电磁场对完整和去膜青蛙肌纤维作用的比较研究表明,交变电场通过改变膜电位引起肌肉收缩,在此过程中收缩蛋白质的空间位置而非自身构象发生变化,横桥尤其是S-2片段,在伴随横桥从弱耦合状态向强耦合状态过渡时远离粗肌丝而向细肌丝运动,使其与粗肌丝骨架的平均取向比松弛状态或静息状态时相对增大.一般强度恒定磁场对肌纤维膜电位状态及肌纤维内部蛋白质分子的运动及其相互作用影响极其微弱.  相似文献   

13.
Ionic Strength and the Contraction Kinetics of Skinned Muscle Fibers   总被引:13,自引:7,他引:6       下载免费PDF全文
The influence of KCl concentration on the contraction kinetics of skinned frog muscle fibers at 5–7°C was studied at various calcium levels. The magnitude of the calcium-activated force decreased continuously as the KCl concentration of the bathing solution was increased from 0 to 280 mM. The shortening velocity at a given relative load was unaffected by the level of calcium activation at 140 mM KCl, as has been previously reported by Podolsky and Teichholz (1970. J. Physiol. [Lond.]. 211: 19), and was independent of ionic strength when the KCl concentration was increased from 140 to 280 mM. In contrast, the shortening velocity decreased as the KCl concentration was reduced below 140 mM; the decrease in velocity was enhanced when the fibers were only partially activated. In the low KCl range, the resting tension of the fibers increased after the first contraction cycle. The results suggest that in fibers activated at low ionic strength some of the cross bridges that are formed are abnormal in the sense that they retard shortening and persist in relaxing solution.  相似文献   

14.
Stress fibers are cellular contractile actomyosin machines central to wound healing, shear stress response, and other processes. Contraction mechanisms have been difficult to establish because stress fibers in cultured cells typically exert isometric tension and present little kinetic activity. In a recent study, living cell stress fibers were severed with laser nanoscissors and recoiled several μm over ∼5 s. We developed a quantitative model of stress fibers based on known components and available structural information suggesting periodic sarcomeric organization similar to striated muscle. The model was applied to the severing assay and compared to the observed recoil. We conclude that the sarcomere force-length relation is similar to that of muscle with two distinct regions on the ascending limb and that substantial external drag forces act on the recoiling fiber corresponding to effective cytosolic viscosity ∼104 times that of water. This may originate from both nonspecific and specific interactions. The model predicts highly nonuniform contraction with caps of collapsed sarcomeres growing at the severed ends. A directly measurable signature of external drag is that cap length and recoil distance increase at intermediate times as t1/2. The severing data is consistent with this prediction.  相似文献   

15.
16.
A Study of the Reinnervation of Fast and Slow Mammalian Muscles   总被引:9,自引:0,他引:9       下载免费PDF全文
Miniature end plate potential (mepp) frequency in innervated extensor muscle is significantly higher than in soleus muscle. 9 days after nerve crush mepps of low amplitude and prolonged duration reappeared at a frequency of 2% of control and were similar to normal muscles after 35 days. Membrane potential began to increase 9–10 days after nerve crush and at 30 days was similar to controls. The region most sensitive to ACh in denervated and reinnervated muscles was the end plate. Caffeine (20 mM, 23°C) induced contracture in innervated soleus but not in extensor muscles. After denervation the extensor became sensitive to caffeine while the soleus muscles decreased in sensitivity to the drug; 4–5 days after reinnervation the effect of caffeine on these muscles was similar to control. The events during reinnervation are: (a) reappearance of mepps at the same time as end plate potential and muscle twitch; (b) partial restoration of the membrane potential; (c) return of caffeine-induced contracture to normal levels in the soleus and its absence in the extensor muscles; (d) return of membrane resistance to normal values in both muscles at about 25 days; and (e) return of ACh-sensitivity to control levels at about 30 days in both muscles. Although these results suggest that the membrane potential and sarcoplasmic reticulum are under neural influence, it remains to be established whether or not separate neurotrophic factors are involved.  相似文献   

17.
18.
A sliding filament model for muscle contraction is extended by including an activation mechanism based on the hypothesis that the binding of calcium by a regulating protein in the myofibrils must occur before the rate constant governing the making of interactions between cross-bridges and thin filament sites can take on nonzero values. The magnitude of the rate constant is proportional to the amount of bound calcium. The model's isometric twitch and rise of force in an isometric tetanus are similar to the curves produced by real muscles. It redevelops force after a quick release in an isometric tetanus faster than the initial rise. Quick release experiments on the model during an isometric twitch show that the “active state” curve produced is different from the postulated calcium binding curve. The force developed by the model can be increased by a small quick stretch delivered soon after activation to values near the maximum generated in an isometric tetanus. Following the quick stretch, the force remains near the tetanic maximum for a long time even though the calcium binding curve rises to a peak and subsequently decays by about 50%. The model satisfies the constraint of shortening with a constant velocity under a constant load. Modifications can be made in the model so that it produces the delayed force changes following step length changes characteristic of insect fibrillar muscle.  相似文献   

19.
ABSTRACT. In the present study, we isolated a species of heliozoans from a brackish pond in Shukkeien Garden, Naka-ku, Hiroshima City, Japan. Electron-microscopic observations showed that the axonemal microtubules in this heliozoan constituted a complex pattern of hexagons and triangles. By applying SDS-polyacrylamide gel electrophoresis and subsequent immunoblotting, molecular weights of α and β-tubulins were determined to be 48 and 45 kDa, respectively. X-ray microanalysis demonstrated that the numerous scales coating the cell body surface were silicic structures. Size and shape of the cell body and the scales were examined and compared with other known species of heliozoans, which led us to conclude that this is a new species belonging to the genus Raphidiophrys . This heliozoan was also found to carry out rapid axopodial contraction during food uptake at a velocity of about 1 mm/s. With reference to this characteristic contractile behavior, this new species was named Raphidiophrys contractilis .  相似文献   

20.
In anesthetized in vivo preparations, responses of two types of extraocular muscle fibers have been studied. The small, multiply innervated slow fibers have been shown to be capable of producing propagated impulses, and thus have been labeled slow multi-innervated twitch fibers. Fast and slow multi-innervated twitch fibers are distinguished by impulse conduction velocities, by ranges of membrane potentials, by amplitudes and frequencies of the miniature end plate potentials, by responses to the intravenous administration of succinylcholine, by the frequency of stimulation required for fused tetanus, and by the velocities of conduction of the nerve fibers innervating each of the muscle fiber types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号