首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidant-induced DNA damage by quartz in alveolar epithelial cells   总被引:2,自引:0,他引:2  
Respirable quartz has recently been classified as a human carcinogen. Although, studies with quartz using naked DNA as a target suggest that formation of oxyradicals by particles may play a role in the DNA-damaging properties of quartz, it is not known whether this pathway is important for DNA damage in the target cells for quartz carcinogenesis, i.e. alveolar epithelial cells. Therefore, we determined in vitro DNA damage by DQ12 quartz particles in rat and human and alveolar epithelial cells (RLE, A549) using the single cell gel electrophoresis/comet assay. The radical generation capacity of quartz was analysed by electron spin resonance (ESR) and by immunocytochemical analysis of the hydroxyl radical-specific DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in the epithelial cells. Quartz particles as well as the positive control hydrogen peroxide, caused a dose-dependent increase in DNA strand breaks in both cell lines. DNA damage by quartz was significantly reduced in the presence of the hydroxyl-radical scavengers mannitol or DMSO. The involvement of hydroxyl radicals was further established by ESR measurements and was also demonstrated by the ability of the quartz to induce formation of 8-OHdG. In conclusion, our data show that quartz elicits DNA damage in rat and human alveolar epithelial cells and indicate that these effects are driven by hydroxyl radical-generating properties of the particles.  相似文献   

2.
The mechanisms that lead to mitochondrial damage under oxidative stress conditions were examined in primary and cultured cells as well as in the nematode Caenorhabditis elegans (C. elegans) treated simultaneously with electron transport inhibitors and oxygen gas. Oxygen loading enhanced the damage of PC 12 cells by thenoyltrifluoroacetone (TTFA, a complex II inhibitor), but did not by rotenone (a complex I inhibitor), antimycin (a complex III inhibitor), and sodium azide (a complex IV inhibitor). In primary hepatocytes, the enhancement was observed with the addition of sodium azide and rotenone, but not by TTFA or antimycin. In the nematode, only rotenone and TTFA enhanced the sensitivity under hyperoxia. These results demonstrate that highly specific inhibitors of electron transport can induce oxygen hypersensitivity in cell levels such as PC 12 cells and primary hepatocytes, and animal level of C. elegans. In addition the cell damage is different dependent on cell type and organism.  相似文献   

3.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   

4.
The addition of rotenone (inhibitor of respiratory complex I), 3-nitropropionic acid (complex II inhibitor), harmine (inhibitor of complexes I and II) and cyclosporin A (CsA, an inhibitor of the mitochondrial permeability transition) reduced the nuclear damage, loss in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with MG132, a proteasome inhibitor. Meanwhile, rotenone, 3-nitropropionic acid and harmine did not affect the inhibitory effect of CsA or trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) on the cytotoxicity of MG132. The results suggest that proteasome inhibition-induced mitochondrial dysfunction and cell injury may be attenuated by the inhibitions of respiratory chain complex I and II. The cytoprotective effect of the mitochondrial permeability transition prevention not appears to be modulated by respiratory complex inhibition.  相似文献   

5.
Peroxynitrite does not directly cause strand scission of genomic DNA. Rather, as we previously reported, the DNA cleavage is largely mediated by H(2)O(2) resulting from the dismutation of superoxide generated in the mitochondria upon peroxynitrite-dependent inhibition of complex III. The present study demonstrates that this process is strictly controlled by the availability of Ca(2+) in the mitochondrial compartment. Experiments using intact as well as permeabilized U937 cells showed that the DNA-damaging response evoked by peroxynitrite is enhanced by treatments causing an increase in mitochondrial Ca(2+) uptake and remarkably reduced under conditions leading to inhibition of mitochondrial Ca(2+) accumulation. An additional, important observation was that the source of the Ca(2+) mobilized by peroxynitrite is the ryanodine receptor; preventing the mobilization of Ca(2+) with ryanodine suppressed the mitochondrial formation of reactive oxygen species and the ensuing DNA strand scission. Identical results were obtained using PC12, C6, and THP-1 cells. These results, along with our previous findings indicating that the DNA damage induced by peroxynitrite is also suppressed by inhibition of the electron flow through complex I, e.g., by rotenone, or by the respiration-deficient phenotype, demonstrate that the mitochondrial formation of DNA-damaging species is critically regulated by the inhibition of complex III and by the availability of Ca(2+).  相似文献   

6.
Respiration of excised roots of 5 day old wheat seedlings with blocked mitochondrial oxidation under simultaneous action of rotenone and antimycine A was studied. A reduced rate of oxygen uptake was observed within the first hour of root treatment inhibitors. However, after a 5 h exposure there was an increase in oxygen uptake, which was prevented by KCN but amplified by malate and ascorbate. The application of inhibitors caused a considerable increase in the respiratory coefficient (RC) up to 2.1, that suggests a significant CO2 release, when the initial sites of mitochondrial electron transport chain were inhibited. RC did not raise, when ascorbate was added in the presence of inhibitors. We assume that inhibition of mitochondrial oxidation at I and III sites of electron transport chain facilitates switching on the alternative paths of reductant translocation to oxygen. Participation of ATPases and redox system of plasma membrane in the response reactions of respiration directed to the restoration of ion, particularly, proton homeostasis in conditions of inhibited mitochondrial oxidation is discussed.  相似文献   

7.
Seo BB  Marella M  Yagi T  Matsuno-Yagi A 《FEBS letters》2006,580(26):6105-6108
Using rat dopaminergic and human neuroblastoma cell lines transduced with the NDI1 gene encoding the internal NADH dehydrogenase (Ndi1) from Saccharomyces cerevisiae, we investigated reactive oxygen species (ROS) generation caused by complex I inhibition. Incubation of non-transduced cells with rotenone elicited oxidative damage to mitochondrial DNA as well as lipid peroxidation. In contrast, oxidative stress was significantly decreased when the cells were transduced with NDI1. Furthermore, mitochondria from the NDI1-transduced cells showed a suppressed rate of ROS formation by the complex I inhibitors. We conclude that the Ndi1 enzyme is able to suppress ROS overproduction from defective complex I.  相似文献   

8.
In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002.  相似文献   

9.
Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.  相似文献   

10.
Inflammation has been recognized as a contributing factor in the pathogenesis of some cancers. In the lung, inflammation is characterized by an influx of polymorphonuclear leukocytes (PMN) that release a variety of reactive oxygen species (ROS). The aim of the present study was to investigate the direct effect of PMN on oxidative DNA damage in lung target cells. Therefore, rat alveolar epithelial cells (RLE) were coincubated with PMN or hydrogen peroxide. Known to be correlated with the incidence of cancer, 7-hydro-8-oxo-2'deoxyguanosine (8-oxodG) was used as an effect marker for oxidative damage. Viability of the RLE, when coincubated with PMN, decreased to 43%, dependent on the ratio between PMN and RLE. After washing off PMN, 8-oxodG levels were significantly increased in RLE, but the highest levels were observed in the washed off PMN fraction. In addition, to avoid washing off procedures, immunohistochemical analysis was used to measure the 8-oxodG levels specifically in the RLE and similar results were obtained. In addition, inhibitor experiments showed that antioxidants ameliorated oxidative DNA damage. Our data provide evidence that ROS released by PMN as well as H2O2, cause oxidative DNA damage in epithelial cells.  相似文献   

11.
Previous studies examining the role of mitochondria-derived reactive oxygen species (ROS) in hypoxic responses have been mainly conducted in isolated lungs and cultured pulmonary artery smooth muscle cells (PASMCs) using mitochondrial inhibitors, and yielded largely conflicting results. Here we report that in freshly isolated mouse PASMCs, which are devoid of the mixed responses from multi-types of cells in lungs and significant changes in gene expression in cultured cells, the mitochondrial electron transport chain (ETC) complex I, II, or III inhibitors blocked hypoxia-induced increases in intracellular ROS and Ca2+ concentration ([ROS]i and [Ca2+]i) without effects on their resting levels. Inhibition of the complex I plus II and/or III did not produce an additive effect. Glutathione peroxidase-1 (Gpx1) or catalase gene overexpression to enhance H2O2 removal remarkably reduced hypoxic increases in [ROS]i and [Ca2+]i, whereas Gpx1 gene deletion had the opposite effect. None of these genetic modifications changed the resting [ROS]i and [Ca2+]i. H2O2 at 51 microM caused a similar increase in DCF fluorescence ([ROS]i) as that by hypoxia, but only induced 33% of hypoxic increase in [Ca2+]i. Moreover, H2O2 (5.1 microM) reversed the inhibition of the hypoxia-induced increase in [Ca2+]i by rotenone. Collectively, our study using various mitochondrial inhibitors and genetic approaches demonstrates that in response to acute hypoxia, the mitochondrial ETC molecules prior to the complex III ubisemiquinone site act as a functional unit to increase the generation of ROS, particularly H2O2, which is important for, but may not fully cause, the hypoxic increase in [Ca2+]i in freshly isolated PASMCs.  相似文献   

12.
13.
The influence of mitochondrial inhibitors, including oligomycin, antimycin and rotenone, on the iodide and oxygen uptake and the nucleotide content of incubated sheep thyroid slices was investigated. Each inhibitor strongly suppressed both iodide and oxygen uptake, and decreased the nucleoside triphosphate content of the slices. In most cases the addition of glucose or mitochondrial substrates restored iodide uptake in inhibitor-treated slices. Inhibitor concentrations sufficient to inhibit iodide uptake strongly had only slight effects on the thyroidal Na(+)+K(+)-activated adenosine triphosphatase. It is concluded that the inhibitors produce their effects by the inhibition in vivo of mitochondrial oxidative phosphorylation. ATP synthesis appears to be essential for iodide uptake to occur, and the high-energy intermediates (or energized state) of oxidative phosphorylation cannot be used to energize the uptake process. To a limited extent glycolytic ATP synthesis can support iodide uptake, which is therefore not exclusively dependent on aerobic metabolism. The mechanism of energy-linked iodide uptake is discussed.  相似文献   

14.
Astrocytes are the most abundant glial cells, which provide metabolic support for neurons. Rotenone is a botanical pesticide of natural origin, known to exhibit neurotoxic potential via inhibition of mitochondrial complex-I. This study was carried out to explore the effect of rotenone on C6 cells. The cell line C6 derived from rat glioma cells represents astrocyte-like cell. C6 cells were treated with rotenone (0.1, 1 and 10?μM) for 4?h. The effect of rotenone was studied on cell survival (MTT reduction and PI uptake); free radicals (ROS and RNS) and DNA damage (comet assay and Hoechst staining). The glial cell activation and apoptotic cell death was evaluated by expression of Glial fibrillary acidic protein (GFAP) and caspase-3 respectively. The treatment with rotenone resulted in decreased cell survival and increased free radical generation. Altered nuclear morphology and DNA damage were evident following rotenone treatment in Hoechst staining and Comet assay. Rotenone elevated expression of GFAP and caspase-3 that indicates glial cell activation and apoptosis, respectively. We further studied the effect of melatonin, an antioxidant, on the observed toxic effects. Co-incubation of antioxidant, melatonin (300?μM), significantly suppressed rotenone induced above-mentioned effects in C6 cells. Inhibitory effects of melatonin suggest that free radicals play a major role in rotenone induced astrocyte activation and cellular toxicity leading to apoptosis of astroglial cells.  相似文献   

15.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

16.
Inhibition of mitochondrial respiratory chain complex I by rotenone had been found to induce cell death in a variety of cells. However, the mechanism is still elusive. Because reactive oxygen species (ROS) play an important role in apoptosis and inhibition of mitochondrial respiratory chain complex I by rotenone was thought to be able to elevate mitochondrial ROS production, we investigated the relationship between rotenone-induced apoptosis and mitochondrial reactive oxygen species. Rotenone was able to induce mitochondrial complex I substrate-supported mitochondrial ROS production both in isolated mitochondria from HL-60 cells as well as in cultured cells. Rotenone-induced apoptosis was confirmed by DNA fragmentation, cytochrome c release, and caspase 3 activity. A quantitative correlation between rotenone-induced apoptosis and rotenone-induced mitochondrial ROS production was identified. Rotenone-induced apoptosis was inhibited by treatment with antioxidants (glutathione, N-acetylcysteine, and vitamin C). The role of rotenone-induced mitochondrial ROS in apoptosis was also confirmed by the finding that HT1080 cells overexpressing magnesium superoxide dismutase were more resistant to rotenone-induced apoptosis than control cells. These results suggest that rotenone is able to induce apoptosis via enhancing the amount of mitochondrial reactive oxygen species production.  相似文献   

17.
Lewy bodies in the brains of patients with Parkinson's disease (PD) contain aggregates of alpha-synuclein (alpha-syn). Missense mutations (A53T or A30P) in the gene encoding alpha-syn are responsible for rare, inherited forms of PD. In this study, we explored the susceptibility of untransfected human dopaminergic BE(2)-M17 neuroblastoma cells, cells transfected with vector only, or cells transfected with wild-type alpha-syn, A30P alpha-syn or A53T alpha-syn to Fe(II)-induced DNA damage in the form of single-strand breaks (SSBs). DNA SSBs were detected following 2-h treatments with various concentrations of Fe(II) (0.01-100.0 microm), using the alkaline single cell-gel electrophoresis ('Comet') assay and quantified by measuring comet tail length (CTL) microm). Fe(II) treatment induced significant increases in CTL in cells transfected with A30P alpha-syn or A53T alpha-syn, even at the lowest concentrations of Fe(II) tested. In comparison, untransfected cells, vector control cells or cells transfected with wild-type alpha-syn exhibited increases in SSBs only when exposed to concentrations of 1.0 microm Fe(II) and above. Even when exposed to higher concentrations (10.0-100.0 microm) of Fe(II), untransfected cells, vector control cells or cells transfected with wild-type alpha-syn were less susceptible to DNA-damage induction than cells transfected with A30P alpha-syn or A53T alpha-syn. Incorporation of DNA-repair inhibitors, hydroxyurea and cytosine arabinoside, enhanced the sensitivity of DNA damage detection. Susceptibility to Fe(II)-induced DNA damage appeared to be dependent on alpha-syn status because cells transfected with wild-type alpha-syn or A53T alpha-syn were equally susceptible to the damaging effects of the mitochondrial respiratory chain inhibitor rotenone. Overall, our data are suggestive of an enhanced susceptibility to the toxic effects of Fe(II) in neuroblastoma cells transfected with mutant alpha-syn associated with inherited forms of PD.  相似文献   

18.
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.  相似文献   

19.
Summary As an approach for a better understanding of the mode of action of rotenone on mammalian cells we have studied the proliferation properties, metabolism and basic cell composition of Ehrlich ascites tumour cells cultured in vitro in the presence of 2,5 µM rotenone and after removal of the inhibitor.Experiments on asynchronous cells showed a rapid cessation of cell division accompanied by increased glycolytic rate, reduced oxygen consumption, moderate increase in DNA content and a fair increase in protein and RNA content of the cultures. DNA histograms obtained by flow-cytometry revealed an accumulation of cells in the G2 and M phase of the cell cycle. Electron micrographs taken after a 24 h treatment of cells illustrated the formation of giant mitochondria and fragmented nuclei.In order to elucidate the dual effect of rotenone — inhibition of mitochondrial energy metabolism and of mitotic processes — the influence on cells of rotenone at different stages of the cell cycle was tested using Ehrlich ascites tumour cells enriched in G1, S and G2 by centrifugal elutriation. DNA histograms and [3H]thymidine labelling index curves of cells from the different fractions cultured in the presence of 2,5 AM rotenone indicated that in addition to the observed accumulation in G2 and mitotic arrest of cells, the cell cycle progression is delayed in G1 phase. This may be explained by an effect of the inhibitor on the respiratory chain. S phase cells seemed to continue the cycle for several hours at a rate comparable to that of controls.Recultivation experiments on rotenone-treated asynchronous cells in inhibitor-free medium confirmed that some cells reinitiate DNA synthesis without preceeding cell division.Thus it must be concluded that cells at all stages of the cycle are affected by rotenone, but the impairment of cellular metabolism becomes manifest and lethal as soon as the acute block at mitosis is abolished and cells reenter the cycle.Abbreviations EAT cells Ehrlich ascites tumour cells - Hanks' solution Hanks' balanced salt solution - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid  相似文献   

20.
Rotenone is a heterocyclic compound widely used as an insecticide, acaricide and piscicide. Its toxicity is mainly caused by the inhibition of mitochondrial respiratory processes and ATP production, resulting in the generation of reactive oxygen species. Reactive oxygen species can interact with DNA, RNA and proteins, leading to cell damage, followed by death. We used the Comet assay, and we analyzed chromosome aberrations, in order to evaluate the genotoxic and clastogenic effects of rotenone on the different phases of the cell cycle. Cultured human lymphocytes were treated with 1.0, 1.5 and 2.0 microg/mL rotenone during the G1, G1/S, S (pulses of 1 and 6 h), and G2 phases of the cell cycle. Rotenone induced DNA damage and was clastogenic, but the clastogenicity was detected only with treatments conducted during the G1/S and S phases of the cell cycle. Rotenone also induced endoreduplication and polyploidy in treatments made during G1, while it significantly reduced the mitotic index in all phases of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号