首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal, which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of calcium, parathyroid hormone, nitric oxide and prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (parathyroid hormone, nitric oxide and prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We then tested the model response in terms of stimulus signal variation versus the biological factors doses to external mechanical stimuli. Despite the limitations of the model, it is consistent and has physiological bases. Biological inputs are histologically measurable. This makes the model amenable to experimental verification.  相似文献   

2.
This work presents an hydrodynamical model of heat stroke, which is a physiopathological state of stress, due to an exposure of animals to an ambient temperature of approximatively 40°C during two hours. The evolution of body temperature during this stress process is characterised by three phases. A first phase of increase is followed by a plateau which occurs before a second phase of increase which can be lethal. The model is based on the analogy of a boat progressively caught in a whirlpool. The evolution of the degree of freedom lost by the boat is mathematically analysed and this study leads to the same three phases. The theoretical curves calculated during this study are well in agreement with the experimental curves obtained with animals. This analogy is compared to a previous one which has been made during another experiment with animals constrained by chemical intoxications. It seems that stress can be considered as a vital vorticity and that hydrodynamic models are powerful tools in understanding this physiopathological state.  相似文献   

3.
In human radiation protection, the shape of the dose effects curve for low doses irradiation (LDI) is assumed to be linear, extrapolated from the clinical consequences of Hiroshima and Nagasaki nuclear explosions. This extrapolation probably overestimates the risk below 200 mSv. In many circumstances, the living species and cells can develop some mechanisms of adaptation. Classical epidemiological studies will not be able to answer the question and there is a need to assess more sensitive biological markers of the effects of LDI. The researches should be focused on DNA effects (strand breaks), radioinduced expression of new genes and proteins involved in the response to oxidative stress and DNA repair mechanisms. New experimental biomolecular techniques should be developed in parallel with more conventional ones. Such studies would permit to assess new biological markers of radiosensitivity, which could be of great interest in radiation protection and radio-oncology.  相似文献   

4.
Experimental Zika virus infection in non-human primates results in acute viral load dynamics that can be well-described by mathematical models. The inoculum dose that would be received in a natural infection setting is likely lower than the experimental infections and how this difference affects the viral dynamics and immune response is unclear. Here we study a dataset of experimental infection of non-human primates with a range of doses of Zika virus. We develop new models of infection incorporating both an innate immune response and viral interference with that response. We find that such a model explains the data better than models with no interaction between virus and the immune response. We also find that larger inoculum doses lead to faster dynamics of infection, but approximately the same total amount of viral production.  相似文献   

5.
Sensitivity and flexibility are typical properties of biological systems. These properties are here investigated in a model for simple and complex intracellular calcium oscillations. In particular, the influence of external periodic forcing is studied. The main point of the study is to compare responses of the system in a chaotic regime with those obtained in a regular periodic regime. We show that the response to external signals in terms of the range of synchronization is not significantly different in regular and chaotic Ca2+ oscillations. However, both types of oscillation are highly flexible in regimes with weak dissipation. Therefore, we conclude that dissipation of free energy is a suitable index characterizing flexibility. For biological systems this appears to be of special importance since for thermodynamic reasons, notably in view of low free energy consumption, dissipation should be minimized.  相似文献   

6.
Adaptive responses are induced by stress such as X radiation and result in a lower than expected biological response. Two-dose adaptive response experiments typically involve a low priming dose followed by a subsequent high radiation dose. Here, we used a sensitive in vivo chromosomal inversion assay to demonstrate for the first time an adaptive response when a low dose (0.01-1 mGy) was given several hours after a high 1000-mGy radiation dose. The adaptive responses in this study were of similar magnitude to the two-dose adaptive responses previously observed in this test system when the low dose was given first. A chromosomal inversion adaptive response was also induced by two 1000-mGy doses and when a 1-mGy dose was preceded or followed by a dose of 0.01 mGy, but not by two 4000-mGy doses. This is also the first example of an adaptive response when both doses are low. Our data agree with previous reports of an on-off mechanism of adaptive response. The induction of an adaptive response by a low dose after a high damaging dose provides evidence that the mechanisms underlying radiation adaptive responses are not due to prevention of damage induced by the high dose but to modulation of the cellular response to this damage.  相似文献   

7.
Biological systems exhibit complex responses to xenobiotics varying from generic stress responses to very specific changes closely associated with the mechanism of toxicity. Until recently our view of this complexity was obscured by the simplicity of available analysis tools which allowed determination of only a few genes in any one study. Then genome sequencing and high throughput library screening projects delivered data on the genome sequence of many organisms, and clones were collected and made available to researchers in a previously unparalleled quantity. To exploit this new resource the microarray was developed from its predecessor the dot blot. Further development has expanded the number of clones contained on any one microarray to a point where the expression of many tens of thousands of genes in a biological system can be determined in a short period of time. What these data are revealing is the full complexity of the gene expression response to stimuli such as xenobiotic exposure. Toxicogenomics seeks to use the complexity of this response as a fingerprint or signature characteristic of that xenobiotic exposure. There are though two major experimental challenges that need to be dealt with for toxicogenomics to be successful. The first is technical and relates to the intrinsic difficulties associated with the accurate measurement of gene expression. For microarrays, this problem is multiplied by the number of genes on the microarray itself. To overcome this technical variability correct experimental design is critical. The second challenge concerns the biological system used. What genetic background, time point and dose of xenobiotic should be chosen? For in vitro systems should cell lines or primary cells be used? These factors, and more, could affect the gene expression profile obtained in response to the same xenobiotic exposure. Using both our data and data from public databases these issues are explored in this paper.  相似文献   

8.
R Holliday 《Mutation research》1991,256(2-6):295-302
Human diploid fibroblasts, strain MRC-5, were sequentially irradiated with 60Co gamma rays at intervals during their in vitro lifespan. The results indicate that 3 or 6 doses of 1 Gy can increase lifespan, and the same was true for cells treated with 3 doses of 3 Gy. Higher doses (5 x 3 Gy) did reduce growth potential, suggesting either that mid-late passage cells become more sensitive to radiation, or that doses beyond a given threshold reduce population lifespan by multiple cellular hits. The life extension induced by gamma rays might be due to an induced hypermethylation of DNA. Alternatively, oxygen radicals produced by irradiation might trigger an adaptive stress response which would remove damaged macromolecules and thereby increase the cells' growth potential. Whichever explanation is correct, the results show that the human fibroblast system is not appropriate for the study of the well known effect of ionizing radiation in shortening the lifespan of experimental animals. Contrary to earlier published results, populations of cells treated with cumulative doses of 15 Gy or 18 Gy and held for nearly 3 months after they had reached senescence (Phase III), produced no foci of transformed cells.  相似文献   

9.
Advances in omics and microbiome technology have transformed the ways in which the biological consequences of life in the ‘ecological theatre' can be visualized. Exposome science examines the total accumulated environmental exposures (both detrimental and beneficial) as a means to understand the response of the ‘total organism to the total environment' over time. The repetitive stimulation of compensatory physiological responses (immune, cardiovascular, neuroendocrine) in response to stress – including sources of stress highly relevant to socioeconomic disadvantage – may lead to metabolic dysregulation and cellular damage, ultimately influencing behavior and disease. The collective toll of physiological wear and tear, known as allostatic load, is not paid equally throughout developed societies. It is paid in excess by the disadvantaged. In the context of fast-food, human and experimental research demonstrates that the biological response to a single fast-food-style meal – especially as mediated by the microbiome- is a product of the person's total lived experience, including the ability to buffer the fast-food meal-induced promotion of inflammation and oxidative stress. Emerging research indicates that each meal and its nutritional context matters. As we discuss, equal weekly visits to major fast-food outlets by the affluent and deprived do not translate into biological equivalency. Hence, debate concerning reducing fast-food outlets through policy – especially in disadvantaged neighborhoods where they are prevalent – requires a biological context. The fast-food establishment and fast-food meal – as they represent matters of food justice and press upon non-communicable disease risk – are far more than physical structures and collections of carbohydrate, fat, sugar and sodium.  相似文献   

10.
The recent years have witnessed a rapid accumulation of experimental data showing that ionizing radiation elicits a plethora of biological effects in unirradiated cells receiving bystander signals from hit cells. This so-called radiation-induced bystander effect (RIBE) manifests in various ways including changes in gene expression, genetic and epigenetic alterations, as well as increases in cell transformation and cell death. Our group and others found that DNA double-stranded breaks (DSBs), directly measured by the γ-H2AX focus formation assay, accumulate in bystander cells in a number of experimental systems such as human cultured cells, human 3-dimensional tissue models and in mice. In addition, we recently found that various other sources of cell stress, including media from cancerous cells resulted in a DNA damage response (DDR) in normal human cells that is reminiscent of RIBE. These results suggest that the RIBE may be part of a more general stress response, however, the molecular mechanism underpinning the formation of DNA DSBs in bystander cells is still unclear. This extra view points to some possibilities that might explain why DDR in human cells can be observed under bystander conditions.  相似文献   

11.
许多优良鱼类养殖品种不耐低温或高温的特点给水产养殖业带来诸多限制和困难,这些鱼类在胚胎和仔鱼等早期阶段的抗寒和抗热能力比成体更差,育苗过程中很容易受到温度突然变化的影响。虽然目前利用基因芯片技术已研究了温度刺激对几种鱼类成体组织中基因表达的影响,但温度刺激对仔鱼基因转录表达的影响还未见报道。研究以斑马鱼受精后96h的出膜仔鱼为实验材料,分别在低温(16℃)和高温(34℃)条件下处理12h和24h,用基因芯片技术检测温度刺激对其基因表达的影响。与培养在28℃的对照相比,低温和高温处理后共有3633个基因发生差异表达,其中低温处理后差异表达基因数目多于高温处理,而且低温抑制基因数目多于诱导表达基因的数目。生物信息学分析结果表明,低温诱导基因主要参与RNA加工和核糖体生物发生等生物学过程,高温诱导基因则主要参与应激反应和未折叠蛋白结合。低温抑制基因主要参与蛋白质水解、视觉感知以及铁离子结合等生物学功能,高温抑制基因参与的生物学功能包括DNA复制、神经系统过程和类固醇激素生物合成等。除了已报道的温度刺激响应基因外,研究鉴定出了大量尚未报道与温度刺激相关的基因,如参与RNA加工的rnmtl1a和pus3基因,以及参与转录调控的twistnb和aebp2基因等。研究结果为进一步揭示鱼类冷或热适应的分子机理和培养耐寒或耐热的养殖新品种提供理论基础。  相似文献   

12.
An adaptive response is a response to a stress such as radiation exposure that results in a lower than expected biological response. We describe an adaptive response to X radiation in mouse prostate using the pKZ1 chromosomal inversion assay. pKZ1 mice were treated with a priming dose of 0.001, 0.01, 1 or 10 mGy followed 4 h later by a 1000-mGy challenge dose. All priming doses caused a similar reduction in inversions compared to the 1000-mGy group, supporting the hypothesis that the adaptive response is the result of an on/off mechanism. The adaptive response was induced by a priming dose of 0.001 mGy, which is three orders of magnitude lower than has been reported previously. The adaptive responses completely protected against the inversions that would have been induced by a single 1000-mGy dose as well as against a proportion of spontaneous background inversions. The distribution of inversions across prostate gland cross sections after priming plus challenge irradiation suggested that adaptive responses were predominantly due to reduced low-dose radiation-induced inversions rather than to reduced high-dose radiation-induced inversions. This study used radiation doses relevant to human exposure.  相似文献   

13.
The importance of fluid-flow-induced shear stress and matrix-induced cell deformation in transmitting the global tendon load into a cellular mechanotransduction response is yet to be determined. A multiscale computational tendon model composed of both matrix and fluid phases was created to examine how global tendon loading may affect fluid-flow-induced shear stresses and membrane strains at the cellular level. The model was then used to develop a quantitative experiment to help understand the roles of membrane strains and fluid-induced shear stresses on the biological response of individual cells. The model was able to predict the global response of tendon to applied strain (stress, fluid exudation), as well as the associated cellular response of increased fluid-flow-induced shear stress with strain rate and matrix-induced cell deformation with strain amplitude. The model analysis, combined with the experimental results, demonstrated that both strain rate and strain amplitude are able to independently alter rat interstitial collagenase gene expression through increases in fluid-flow-induced shear stress and matrix-induced cell deformation, respectively.  相似文献   

14.
We consider the dynamics of a model toggle switch abstracted from the genetic interactions operative in a fungal stress response circuit. The switch transduces an external signal and propagates it forward by mediating the transport between compartments of two interacting gene products. The transport between compartments is assumed to be related to the degree of association between the interacting proteins, a fact for which there exists a wealth of biological evidence. The ubiquity and modularity of this cellular control mechanism warrants a detailed study of the dynamics entailed by various modelling assumptions. Specifically, we consider a general gate model in which both of the associating proteins are freely transportable between compartments. A more restrictive, but biologically supported model, is considered in which only one of the two proteins undergoes transport. Under the strong assumption that the disassociation of the interacting proteins is unidirectional we show that the qualitative dynamics of the two models are similar; that is they both converge to unique periodic orbits. From a biophysical perspective the assumption of unidirectional dissociation is unrealistic. We show that the same result holds for the more restrictive model when one weakens the assumption of unidirectional binding or disassociation. We speculate that this is not true for the more general model. This difference in dynamics may have important biological implications and certainly points to promising avenues of research.  相似文献   

15.
Following a significant increase in the number of facilities in the world having and developing low- and high-linear energy transfer (LET) microbeams for experimental radiobiological studies, it is useful and demanding to establish reliable computational models to analyze such experiments. This paper summarizes initial MCNP5 calculations of the basic parameters needed to study X-ray microbeam penetration, dose deposition and dose spatial dissipation in tissue-like media of micro and macro scales. The presented models can be used to predict doses delivered to neighboring cells and analyze the cause of bystander cell deaths. In the case of low-LET radiation, dose distribution is more homogenized when compared to high-LET that deposits almost all of its energy in the cell hit by radiation. Results are presented for a microbeam of monoenergetic soft (2–10 keV) X-rays for two different micro-models: (a) single-cells of homogeneous and uniform chemical compositions, and (b) single-cells of heterogeneous structures (nucleus and cytoplasm) with different chemical compositions. In both numerical models, only one cell is irradiated and the electron and X-ray doses in all cells are recorded. It was found that surrounding cells receive approximately five orders of magnitude less dose than the target cell in the homogenized cell model. The more detailed, heterogeneous model showed that the nucleus of the target cell receives more than 95% of the dose delivered to the entire cell, while neighboring cell nuclei receive approximately 65% of their total cell dose. Results of the macroscopic behavior of a soft X-ray microbeam using a cylindrical phantom 5 cm tall and 1 cm in diameter are also presented. Three-dimensional dose profiles indicate the spatial dose dissipation. For example, a 10 keV X-ray microbeam dose scatters to a negligible level at 0.3 cm radially from the center while it reaches an axial depth of 2 cm.  相似文献   

16.
There is now little doubt of the existence of radioprotective mechanisms, or stress responses, that are upregulated in response to exposure to small doses of ionizing radiation and other DNA-damaging agents. Phenomenologically, there are two ways in which these induced mechanisms operate. First, a small conditioning dose (generally below 30 cGy) may protect against a subsequent, separate, exposure to radiation that may be substantially larger than the initial dose. This has been termed the adaptive response. Second, the response to single doses may itself be dose-dependent so that small acute radiation exposures, or exposures at very low dose rates, are more effective per unit dose than larger exposures above the threshold where the induced radioprotection is triggered. This combination has been termed low-dose hypersensitivity (HRS) and induced radioresistance (IRR) as the dose increases. Both the adaptive response and HRS/IRR have been well documented in studies with yeast, bacteria, protozoa, algae, higher plant cells, insect cells, mammalian and human cells in vitro, and in studies on animal models in vivo. There is indirect evidence that the HRS/IRR phenomenon in response to single doses is a manifestation of the same underlying mechanism that determines the adaptive response in the two-dose case and that it can be triggered by high and low LET radiations as well as a variety of other stress-inducing agents such as hydrogen peroxide and chemotherapeutic agents although exact homology remains to be tested. Little is currently known about the precise nature of this underlying mechanism, but there is evidence that it operates by increasing the amount and rate of DNA repair, rather than by indirect mechanisms such as modulation of cell-cycle progression or apoptosis. Changed expression of some genes, only in response to low and not high doses, may occur within a few hours of irradiation and this would be rapid enough to explain the phenomenon of induced radioresistance although its specific molecular components have yet to be identified.  相似文献   

17.
Various modeling approaches have been applied to describe the rearrangement of immobilized cell clusters within the extracellular matrix. The cell rearrangement has been related with the micro-environmental restrictions to cell growth. Herein, an attempt is made to discuss and connect various modeling approaches on various time scales which have been proposed in the literature in order to shed further light to this complex phenomenon which induces micro-environmental restrictions to cell growth. The rearrangement is driven by internal stress generated within the cluster. The internal stress represents a consequence of the matrix rheological response to cell expansion. The rearrangement includes the interplay between the processes of: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances and (4) cell growth. It has been considered on two time scales: a short time scale (i.e. the rearrangement time) and a long time scale (i.e. the growing time). The results indicate that short and long times cell rearrangement induces energy dissipation. The dissipation provokes biological responses of cells which cause the resistance effects to cell growth. Deeper insight in the anomalous nature of the energy dissipation would be useful for understanding the biological mechanisms which causes the resistance effects to cell growth.  相似文献   

18.
The ratio of entropy generation rate to entropy embodied in structures relatively to the surroundings can be considered as an indicator of the ability of a self-organizing dissipative system to maintain itself far from equilibrium by pumping out entropy. The higher the ratio (which may be called the specific entropy production or the specific dissipation of a system), the lower the capacity of a system to convert the incoming low-entropy energy into internal organization. It appears that the ratio attains special significance for interpreting the evolution of biological systems, as the maximum expression of self-organizing systems, from the sub-cellular to the ecosystem scale. This paper proposes specific dissipation, written as the ratio of biological entropy production to exergy stored in the living biomass, as a thermodynamic orientor as well as an indicator of the development state of ecological systems. After having presented a method for estimating the specific dissipation in lakes, the adequacy of the proposed indicator is discussed and also tested by comparing its response to those of some classical ecological attributes (successional sequences of species, biodiversity, individual body size, structural organization and generation time of organisms) throughout the seasonal progression of the plankton community in Lake Trasimeno (Umbria, Italy). The results support the hypothesis that the minimization of specific dissipation is a primary criterion of evolution of ecological systems and also sustain the use of specific dissipation as an indicator of ecological maturity.  相似文献   

19.
Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.  相似文献   

20.
High stress response is an important factor impeding the breeding of wild animals in captivity. Experimental fawn manipulation is considered a suitable approach to reduce the negative effects of behavioral and physiological stress. The forest musk deer (Moschus berezovskii) is classified as “endangered” by the IUCN Red List due to over-exploitation for musk production. Musk is highly valued for its cosmetic and alleged pharmaceutical properties and has stimulated the enthusiasm of captive musk deer breeding in recent years. This study attempts to reduce behavioral and physiological stress responses in juvenile musk deer using experimental fawn manipulation. Habituation started 5 days after birth and lasted until weaning age (90 days). We determined the behavioral stress response at the age of 30, 60, 90, 150, and 360 days by measuring acceptance or rejection of three treatment intensities (i.e., stroking, embracement) and quantified behavioral responses (urination, approaching the investigator). At the same time, physiological stress parameters were established, measuring the fecal glucocorticosteroid metabolite (FGM) concentration. Our results indicate that fawn manipulation initially reduced the behavioral stress, but after termination of treatments, stress symptoms reoccurred. We detected no difference in the FGM concentrations between treatment and control groups, suggesting that the experimental fawn manipulation did not decrease the physiological stress response. This implies that behavioral stress reduction cannot be sustained if the physiological stress remains unaltered. We argue that the socio-positive reactions of musk deer fawns to humans could be phenotypic and that the physiological stress response rather reflects their intrinsic characteristics than a successful manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号