首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Hutchinson‐Gilford Progeria Syndrome (HGPS) is a devastating premature aging disease. Mouse models have been instrumental for understanding HGPS mechanisms and for testing therapies, which to date have had only marginal benefits in mice and patients. Barriers to developing effective therapies include the unknown etiology of progeria mice early death, seemingly unrelated to the reported atherosclerosis contributing to HGPS patient mortality, and mice not recapitulating the severity of human disease. Here, we show that progeria mice die from starvation and cachexia. Switching progeria mice approaching death from regular diet to high‐fat diet (HFD) rescues early lethality and ameliorates morbidity. Critically, feeding the mice only HFD delays aging and nearly doubles lifespan, which is the greatest lifespan extension recorded in progeria mice. The extended lifespan allows for progeria mice to develop degenerative aging pathologies of a severity that emulates the human disease. We propose that starvation and cachexia greatly influence progeria phenotypes and that nutritional/nutraceutical strategies might help modulate disease progression. Importantly, progeria mice on HFD provide a more clinically relevant animal model to study mechanisms of HGPS pathology and to test therapies.  相似文献   

4.
5.
Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high‐fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD‐fed rats. In addition, it lowered the levels of lipopolysaccharide and pro‐inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD‐fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll‐like receptor 4 (TLR4), NF‐κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO‐1, Occludin and Claudin‐1. Therefore, in HFD‐induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability.  相似文献   

6.
Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; P<.05) and lower energy intake (269.45 +/- 4.02 KJ/animal.day vs day vs 300.81 +/- 4.52 KJ/animal.day; P<.05) and had less fat mass at epididymal location respect to the whole body weight (0.014 +/- 0.001 vs 0.017 +/- 0.001; P<.05) than the HFD group. However, the red wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity.  相似文献   

7.
8.
The aim of this study was to investigate the effect of isocaloric intake from a high‐fat diet (HFD) on insulin resistance and inflammation in rats. Male Wistar rats were fed on an HFD (n = 12) or control diet (n = 12) for 12 weeks. Subsequently, all animals were euthanized, and blood glucose, insulin, free fatty acids, C‐reactive protein, lipid profile, cytokines and hepatic‐enzyme activity were determined. Carcass chemical composition was also analyzed. During the first and the twelfth weeks of the experimental protocol, the oral glucose tolerance test and insulin tolerance test were performed and demonstrated insulin resistance (P < 0.05) in the HFD group. Although food intake (g) was lower (P < 0.05) in the HFD group compared with the control group, the concentration of total cholesterol, low‐density lipoprotein, C‐reactive protein and liver weight were all significantly higher. The kinase inhibitor of κB, c‐Jun N‐terminal kinase and protein kinase B expressions were determined in the liver and skeletal muscle. After an insulin stimulus, the HFD group demonstrated decreased (P = 0.05) hepatic protein kinase B expression, whereas the kinase inhibitor of κB phospho/total ratio was elevated in the HFD muscle (P = 0.02). In conclusion, the isocaloric intake from the HFD induced insulin resistance, associated with impaired insulin signalling in the liver and an inflammatory response in the muscle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
12.
Alogliptin is a commonly prescribed drug treating patients with type 2 diabetes. Here, we show that long‐term intervention with alogliptin (0.03% w/w in diet) improves survival and health of mice on a high‐fat diet. Alogliptin intervention takes beneficial effects associated with longevity, including increased insulin sensitivity, attenuated functionality decline, decreased organ pathology, preserved mitochondrial function, and reduced oxidative stress. Autophagy activation is proposed as an underlying mechanism of these beneficial effects. We conclude that alogliptin intervention could be considered as a potential strategy for extending lifespan and healthspan in obesity and overweight.  相似文献   

13.
Long‐chain polyunsaturated n‐3 fatty acids (n‐3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep‐AT) and liver were investigated. Male rats were fed a high‐sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU–FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n‐3 LCPUFAs prevented sucrose‐induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n‐3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep‐AT of rats fed the SU–FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n‐3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The chronopharmacology refers to the utilization of physiological circadian rhythms to optimize the administration time of drugs, thus increasing their efficacy and safety, or reducing adverse effects. Simvastatin is one of the most widely prescribed drugs for the treatment of hypercholesterolaemia, hyperlipidemia and coronary artery disease. There are conflicting statements regarding the timing of simvastatin administration, and convincing experimental evidence remains unavailable. Thus, we aimed to examine whether different administration times would influence the efficacy of simvastatin. High‐fat diet‐fed mice were treated with simvastatin at zeitgeber time 1 (ZT1) or ZT13, respectively, for nine weeks. Simvastatin showed robust anti‐hypercholesterolaemia and anti‐hyperlipidemia effects on these obese mice, regardless of administration time. However, simvastatin administrated at ZT13, compared to ZT1, was more functional for decreasing serum levels of total cholesterol, triglycerides, non‐esterified free fatty acids and LDL cholesterol, as well as improving liver pathological characteristics. In terms of possible mechanisms, we found that simvastatin did not alter the expression of hepatic circadian clock gene in vivo, although it failed to change the period, phase and amplitude of oscillation patterns in Per2::Luc U2OS and Bmal1::Luc U2OS cells in vitro. In contrast, simvastatin regulated the expression of Hmgcr, Mdr1 and Slco2b1 in a circadian manner, which potentially contributed to the chronopharmacological function of the drug. Taken together, we provide solid evidence to suggest that different administration times affect the lipid‐lowering effects of simvastatin.  相似文献   

15.
16.
During the last two decades Zinc (Zn) as a micronutrient is being used indiscriminately in agricultural and husbandry practices and also in baby foods and multivitamin supplements with a view that Zn is non-toxic and promotes linear growth and body weight in the consumers. The long-term effect of increasing Zn load in the body has not been worked out so far. In this study, three groups of rats were fed on a semi-synthetic diet containing 20 mg (control, group-I), 40 mg (group-II) and 80 mg Zn /kg (group-III) diet respectively for 6 months. The results revealed that the gain in body weight increased in rats in Zn-concentration dependent manner. The urine examined on weekly basis showed glucosuria in group-II on week 10 and in group-III on week 8 and thereafter. The arterial blood pressure was significantly higher in group-II and III than their control counter parts on monthly basis. Histochemical examination of skin revealed an increase in the number of adipocytes filled with triglycerides making a subcutaneous fatty tissue thicker in group-II and group-III than that of control group. The blood profile after 180 days of dietary treatment, displayed a significant rise in glucose, total lipids, cholesterol, triglycerides, LDL-cholesterol, VLDL-cholesterol, insulin, cortisol and aldosterone whereas HDL-cholesterol, T3, T4 and TSH showed a reduction in their levels in the blood serum. The tissue metal status showed an increase of Zn, Cu and Mg in the serum, a rise in Zn in liver, hair and abdominal muscles and fall in Cu and Mg concentrations in liver, hair and abdominal muscles. This data suggest that Zn in excess in diet when fed for longer periods of time induces metabolic syndrome-X.  相似文献   

17.
Several studies have suggested that oxidative stress might cause and aggravate the inflammatory state associated with obesity and could be the link between excessive weight gain and its related disorders such as insulin resistance and cardiovascular diseases. Thus, antioxidant treatment has been proposed as a therapy to prevent and manage obesity and associated complications. Therefore, the aim of the present study was to investigate the effects of supplementation of a standard or high fat diet with the antioxidant lipoic acid (LA) during 56 days, on body weight gain, adiposity, feed efficiency and intestinal sugar absorption, in male Wistar rats. LA supplementation induced a lower body weight gain and adipose tissue size in both control or high fat fed rats accompanied by a reduction in food intake. The group fed on a high fat diet and treated with LA (OLIP group) showed a lower body weight gain than its corresponding Pair-Fed (PF) group (P<0.05), which received the same amount of food than LA-treated animals but with no LA. In fact, LA induced a reduction on feed efficiency and also significantly decreased intestinal α-methylglucoside (α-MG) absorption both in lean and obese rats. These results suggest that the beneficial effects of dietary supplementation with LA on body weight gain are mediated, at least in part, by the reduction observed in food intake and feed efficiency. Furthemore, the inhibitory action of LA on intestinal sugar transport could explain in part the lower feed efficiency observed in LA-treated animals and therefore, highlighting the beneficial effects of LA on obesity.  相似文献   

18.
19.
The intake of caffeine (CF) at 0.025, 0.05 or 0.1% for 21 days progressively reduced the body fat mass and body fat percentage in Sprague-Dawley (SD) rats fed on a high-fat diet with increasing administration level. Moreover, CF increased the serum concentrations of catecholamines and free fatty acids in SD rats orally administered with CF (5 mg/kg). These results suggest that the intake of CF reduced body fat by lipolysis via catecholamines. CF has potential as a functional food ingredient with an anti-obesity action.  相似文献   

20.
A synthetic analogue of capsaicin (0.2 mg%) fed to female Wistar rats along with a high fat diet for 11 weeks, lowered adipose tissue weight and also liver and serum triglycerides. The compound elevated total post heparin plasma lipase and skeletal muscle lipase activities. The increase in the latter indicates the possible mechanism by which capsaicin enhances serum triglyceride uptake by muscle tissue and in turn lowers triglyceride levels. A single dose of capsaicin even at a much higher level failed to lower serum triglycerides emphasizing the necessity of continuous ingestion of capsaicin for exerting its hypolipidemic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号