首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
Measuring the balance between insulin synthesis and insulin release   总被引:4,自引:0,他引:4  
The absolute rates of hormone synthesis and release were determined in purified pancreatic B cells. Newly synthesized proteins were labeled with L-[3,5-3H]tyrosine or L-[2,5-3H]histidine. When medium glucose was less than or equal to 10 mM, the production of insulin exceeded or equaled its release. Raising the glucose levels above 10 mM did not further increase the rate of insulin synthesis (67 +/- 10 fmol/10(3) cells/2 hour) but elevated that of insulin release up to 3-fold the production rates (181 +/- 10 fmol/10(3) cells/2 hour). In the presence of glucagon or of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate the cells also released 3-fold more hormone that they synthesized; release was however reduced to 25% of the rate of production in the presence of epinephrine. It is concluded that glucose as well as hormonal regulators of islet B cells can influence, bi-directionally, the balance between the rates of insulin synthesis and release.  相似文献   

2.
Three photoreactive insulin analogues (“photoprobes”) have been prepared in which an aryl azide group was substituted at either the A1, B1 or B29 positions of the insulin molecule. When incubated with rat liver plasma membranes and irradiated all three photoprobes covalently labelled specific insulin binding sites within the membrane. SDS-polyacrylamide gel electrophoresis of plasma membranes covalently tagged with either of the three 125I-photoprobes resolved one major specifically labelled polypeptide with an apparent molecular weight of 130,000. The labelled polypeptide migrated anomalously in SDS-polyacrylamide gels and a molecular weight of 90,000 for the polypeptide was determined from a ‘Ferguson’ plot using the combined results from gels of different acrylamide concentrations. Column chromatography of detergent solubilised photoprobe-labelled membranes indicated that the labelled polypeptide may be a subunit of a larger protein complex.  相似文献   

3.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

4.
Kleinjung J  Fabry M 《Peptides》2000,21(3):401-406
Two different photoinsulins, the radioactive N(epsilonB29)-(4-azidosalicyloyl) insulin and the novel biotinylated N(epsilonB29)-(4-azidotetrafluorobenzoyl-biocytinyl) insulin, were synthesized in order to study the binding stoichiometry of insulin and the insulin receptor in a direct approach. Both derivatives were cross-linked simultaneously to the (alphabeta)(2) receptor. Insulin-receptor conjugates were formed that carry a radioactive label as well as a biotin label. The doubly labeled complexes were isolated by streptavidin-affinity chromatography. Analysis of both markers, the radioactive (125)I marker and the biotin marker, proved the existence of a covalent complex of one receptor molecule and two ligands. Thus, orthogonal photocross-linking is introduced as a method for the isolation and analysis of bivalent receptor complexes.  相似文献   

5.
We immunized mice with insulin and found that those strains that develop insulin antibodies subsequently produce insulin-like activity in amount equivalent to 300–400 ng insulin per ml serum. The activity was due exclusively to IgG2 antibodies. Bioactivity could be blocked efficiently by insulin antibodies from guinea pigs and from mice. The active IgG2 also displaced labeled insulin from fat cells. Preliminary in vivo studies have indicated that the appearance of insulin-like antibodies in the mouse resulted in abnormal glucose homeostasis and “down regulation” of insulin receptors. These results indicate that immunization to insulin can initiate an idiotype-anti-idiotype network resulting in antibodies to the hormone receptor.  相似文献   

6.
Purvis JE  Lahav G 《Molecular cell》2012,46(6):715-716
In this issue of Molecular Cell, Kubota et al. (2012) show how different temporal patterns of insulin are decoded by the AKT signaling network, providing both new mechanistic insights and physiological relevance.  相似文献   

7.
Ottensmeyer FP  Beniac DR  Luo RZ  Yip CC 《Biochemistry》2000,39(40):12103-12112
Transmembrane signaling via receptor tyrosine kinases generally requires oligomerization of receptor monomers, with the formation of ligand-induced dimers or higher multimers of the extracellular domains of the receptors. Such formations are expected to juxtapose the intracellular kinase domains at the correct distances and orientations for transphosphorylation. For receptors of the insulin receptor family that are constitutively dimeric, or those that form noncovalent dimers without ligands, the mechanism must be more complex. For these, the conformation must be changed by the ligand from one that prevents activation to one that is permissive for kinase phosphorylation. How the insulin ligand accomplishes this action has remained a puzzle since the discovery of the insulin receptor over 2 decades ago, primarily because membrane proteins in general have been refractory to structure determination by crystallography. However, high-resolution structural evidence on individual separate subdomains of the insulin receptor and of analogous proteins has been obtained. The recently solved quaternary structure of the complete dimeric insulin receptor in the presence of insulin has now served as the structural envelope into which such individual domains were fitted. The combined structure has provided answers on the details of insulin/receptor interactions in the binding site and on the mechanism of transmembrane signaling of this covalent dimer. The structure explains many observations on the behavior of the receptor, from greater or lesser binding of insulin and its variants, point and deletion mutants of the receptor, to antibody-binding patterns, and to the effects on basal and insulin-stimulated autophosphorylation under mild reducing conditions.  相似文献   

8.
The structure of the hepatic insulin receptor and insulin binding.   总被引:1,自引:1,他引:0       下载免费PDF全文
Hepatocytes or hepatic plasma membranes were photoaffinity-labelled with radioiodinated N epsilon B29-monoazidobenzoyl-insulin. Analysis of the samples by SDS/polyacrylamide-gel electrophoresis and autoradiography revealed the insulin receptor as a predominant band of 450 kDa. When hepatic plasma membranes were first treated with clostridial collagenase and then photolabelled, the insulin receptor appeared as a predominant band of 360 kDa. This effect of collagenase treatment on the insulin receptor was due to Ca2+-dependent heat-labile proteinases contaminating the preparation of collagenase, and it could be mimicked by elastase. The decrease in size of the insulin receptor to 360 kDa resulted from the loss of a receptor component that was inaccessible to photolabelling. In contrast, the size of the insulin receptor of intact cells was not affected by collagenase treatment. This suggests that the site sensitive to proteolysis was located on the cytoplasmic side of the plasma membrane. In hepatic plasma membranes that were treated with collagenase or elastase, and contained the 360 kDa form of the insulin receptor, the binding affinity for insulin was increased by up to 2-fold. These findings support the concept that a component which is either a part of, or closely associated with, the insulin receptor may regulate its affinity for insulin.  相似文献   

9.
The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation. A model for insulin fibril formation is proposed in which the formation of a partially folded intermediate is the precursor for associated species on the pathway to fibril formation.  相似文献   

10.
《Biophysical journal》2022,121(21):4063-4077
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; “microreceptor” [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) “threads” through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of ?1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex—rationalizing why minimal C-domain lengths block complete activity—and might be exploited to design novel receptor-isoform-specific analogs.  相似文献   

11.
Procyanidins are bioactive flavonoid compounds from fruits and vegetables that possess insulinomimetic properties, decreasing hyperglycaemia in streptozotocin-diabetic rats and stimulating glucose uptake in insulin-sensitive cell lines. Here we show that the oligomeric structures of a grape-seed procyanidin extract (GSPE) interact and induce the autophosphorylation of the insulin receptor in order to stimulate the uptake of glucose. However, their activation differs from insulin activation and results in differences in the downstream signaling. Oligomers of GSPE phosphorylate protein kinase B at Thr308 lower than insulin does, according to the lower insulin receptor activation by procyanidins. On the other hand, they phosphorylate Akt at Ser473 to the same extent as insulin. Moreover, we found that procyanidins phosphorylate p44/p42 and p38 MAPKs much more than insulin does. These results provide further insight into the molecular signaling mechanisms used by procyanidins, pointing to Akt and MAPK proteins as key points for GSPE-activated signaling pathways. Moreover, the differences between GSPE and insulin might help us to understand the wide range of biological effects that procyanidins have.  相似文献   

12.
We investigated the downregulating effect of varying states (physiologic and pharmacologic) of systemic and intracranial hyperinsulinism on the 28 to 30 day fetal rabbit brain insulin receptor. Alloxan-induced maternal diabetes (n = 5) produced mild fetal hyperinsulinemia (D) (plasma insulin concentrations = 59.80 +/- 8.10 microU/ml, control = 26.25 +/- 3.70; p less than 0.01), whereas systemic administration (IMI) of 1.0 U (n = 4) and 2.0 U (n = 4) of insulin to the fetus resulted in moderate (103.13 +/- 34.63 microU/ml) and severe (288.3 +/- 51 microU/ml) fetal hyperinsulinemia respectively. All three states of systemic hyperinsulinemia neither altered the fetal brain insulin content nor the brain insulin receptor number and affinity. 0.01 U (n = 4) of intracranial insulin administration (ICI) increased the brain insulin content four-fold (p less than 0.01) but did not alter the brain insulin receptor number or affinity. 0.1 (n = 5) and 2.0 U (n = 7) of intracranial insulin increased the brain insulin content to supraphysiologic concentrations (p less than 0.01) and decreased the fetal brain insulin receptor number (p less than 0.01), the affinity remaining constant. We conclude that 1) regardless of the ability of insulin to cross the blood brain barrier, the downregulation of the brain insulin receptor is insulin dose-dependent and 2) the downregulation of the fetal brain insulin receptor is not a physiologic but a pharmacologic effect of insulin.  相似文献   

13.
Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to internalization of the hormone-receptor complex. In contrast, adipocytes from pregnant and lactating rats did not exhibit this 'down-regulation' phenomenon. Down regulation was, however, apparent in all groups when the experiments were performed in Tris buffer (where receptor recycling is inhibited), suggesting that in pregnant and lactating rats insulin receptors are rapidly recycled back to the plasma membrane, whereas in virgin rats this recycling process is less effective. Internalization of insulin was also determined by using 125I-labelled insulin. Adipocytes from pregnant and lactating rats appeared to internalize similar amounts of insulin to virgin rats. In the presence of the lysosomal inhibitor chloroquine, adipocytes from pregnant rats internalized more insulin than virgin or lactating rats. These results suggest that adipocytes from pregnant and lactating rats internalize insulin and its receptor normally, whereas intracellular processing of the insulin receptor may differ from that in virgin rats. In addition the rate of lysosomal degradation of insulin may be altered in adipocytes from pregnant rats.  相似文献   

14.
Dithiothreitol (DTT) was observed to increase both beta-subunit autophosphorylation and exogenous substrate phosphorylation of the insulin receptor in the absence of insulin. The natural protein reducing agent thioredoxin was also observed to increase the insulin receptor beta-subunit autophosphorylation. The activation of the insulin receptor/kinase by both DTT and thioredoxin was found to be additive with that of insulin. Further, the increase in the insulin receptor beta-subunit autophosphorylation in the presence of DTT and insulin was demonstrated to be due to an increase in the initial rate of autophosphorylation without alteration in the extent of phosphorylation. Similarly, the increase in the exogenous substrate phosphorylation was due to an increase in the Vmax of phosphorylation without significant effect on the apparent Km of substrate binding. In the presence of relatively low concentrations of DTT, insulin was found to potentiate the apparent insulin receptor subunit reduction of the native alpha 2 beta 2 heterotetrameric complex into alpha beta heterodimers, when observed by silver staining of sodium dodecyl sulfate-polyacrylamide gels. N-[3H]Ethylmaleimide ([3H]NEM) labeling in the absence of DTT pretreatment demonstrated that only the beta subunit had accessible sulfhydryl group(s). However, treatment of insulin receptors with DTT increased the amount of [3H]NEM labeling in the beta subunit as well as exposing sites on the alpha subunit. Further, incubation of the insulin receptors with the combination of DTT and insulin also demonstrated the apparent insulin-potentiated subunit reduction without any increase in the total amount of [3H]NEM labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The design of insulin analogues has emphasized stabilization or destabilization of structural elements according to established principles of protein folding. To this end, solvent-exposed side-chains extrinsic to the receptor-binding surface provide convenient sites of modification. An example is provided by an unfavorable helical C-cap (Thr(A8)) whose substitution by favorable amino acids (His(A8) or Arg(A8)) has yielded analogues of improved stability. Remarkably, these analogues also exhibit enhanced activity, suggesting that activity may correlate with stability. Here, we test this hypothesis by substitution of diaminobutyric acid (Dab(A8)), like threonine an amino acid of low helical propensity. The crystal structure of Dab(A8)-insulin is similar to those of native insulin and the related analogue Lys(A8)-insulin. Although no more stable than native insulin, the non-standard analogue is twice as active. Stability and affinity can therefore be uncoupled. To investigate alternative mechanisms by which A8 substitutions enhance activity, multiple substitutions were introduced. Surprisingly, diverse aliphatic, aromatic and polar side-chains enhance receptor binding and biological activity. Because no relationship is observed between activity and helical propensity, we propose that local interactions between the A8 side-chain and an edge of the hormone-receptor interface modulate affinity. Dab(A8)-insulin illustrates the utility of non-standard amino acids in hypothesis-driven protein design.  相似文献   

17.
Summary The effects of theophylline on insulin receptors and insulin action in isolated rat adipocytes were studied. Theophylline reduced insulin binding by a decrease of receptor affinity. As concentration-response curves revealed, the effect was paralleled by a reduction of the cellular ATP content. Basal as well as insulin-stimulated glucose transport (2-deoxyglucose and 3-O-methylglucose uptake) were inhibited by much smaller theophylline concentrations (0.15–0.6 mM ) than those necessary to reduce insulin binding and to lower ATP levels (1–4.8 mM), or to stimulate lipolysis (0.3-2.4 mM). Insulin fully antagonized the effect of theophylline on lipolysis but failed to reverse the inhibition of glucose transport completely. The results suggest that (a) theophylline impairs insulin action at a post-receptor level and, at higher concentrations, by a decrease of receptor binding, (b) the reduction of insulin receptor affinity probably reflects ATP depletion of the adipocyte, and (c) the xanthine inhibits glucose transport independently from its effects on lipolysis.  相似文献   

18.
L D Grossman 《CMAJ》1998,158(9):1132-1133
  相似文献   

19.
20.
The mechanism by which glucose and other nutrient secretagogues induce the insulin secretion, is still controversial. Thiamine deficient rats, having a block in the glucose and branched chain amino acid metabolism at pyruvate and branched chain keto acids dehydrogenases respectively, were used to study the effects of insulin secretagogues. The levels of fasting blood glucose and serum insulin were estimated. Also, the serum insulin was assayed after intravenous administration of leucine, arginine and tolbutamide. The fasting blood glucose was increased and the serum insulin was decreased in thiamine deficiency. Leucine and arginine did not enhance insulin secretion in thiamine deficient animals. Tolbutamide induces the insulin secretion minimally in thiamine deficient rats. These results suggest that the nutrient secretagogues require an unimpaired glucose metabolism to induce insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号