首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective : Visceral (VAT) and abdominal subcutaneous (SAT) adipose tissues contribute to obesity but may have different metabolic and atherosclerosis risk profiles. We sought to determine the associations of abdominal VAT and SAT mass with markers of cardiac and metabolic risk in a large, multiethnic, population‐based cohort of obese adults. Design and Methods : Among obese participants in the Dallas Heart Study, we examined the cross‐sectional associations of abdominal VAT and SAT mass, assessed by magnetic resonance imaging (MRI) and indexed to body surface area (BSA), with circulating biomarkers of insulin resistance, dyslipidemia, and inflammation (n = 942); and with aortic plaque and liver fat by MRI and coronary calcium by computed tomography (n = 1200). Associations of VAT/BSA and SAT/BSA were examined after adjustment for age, sex, race, menopause, and body mass index. Results : In multivariable models, VAT significantly associated with the homeostasis model assessment of insulin resistance (HOMA‐IR), lower adiponectin, smaller LDL and HDL particle size, larger VLDL size, and increased LDL and VLDL particle number (p < 0.001 for each). VAT also associated with prevalent diabetes, metabolic syndrome, hepatic steatosis, and aortic plaque (p < 0.001 for each). VAT independently associated with C‐reactive protein but not with any other inflammatory biomarkers tested. In contrast, SAT associated with leptin and inflammatory biomarkers, but not with dyslipidemia or atherosclerosis. Associations between SAT and HOMA‐IR were significant in univariable analyses but attenuated after multivariable adjustment. Conclusion : VAT associated with an adverse metabolic, dyslipidemic, and atherogenic obesity phenotype. In contrast, SAT demonstrated a more benign phenotype, characterized by modest associations with inflammatory biomarkers and leptin, but no independent association with dyslipidemia, insulin resistance, or atherosclerosis in obese individuals. These findings suggest that abdominal fat distribution defines distinct obesity sub‐phenotypes with heterogeneous metabolic and atherosclerosis risk.  相似文献   

2.
3.
The aim of this study was to investigate fat distribution, mainly abdominal fat, and its relationship with metabolic risk variables in a group of 126 children and adolescents (60 males and 66 females) aged 5.0 to 14.9. According to IOTF criteria, 46 were classified as normal weight, 28 overweight and 52 obese. Weight, height, waist (WC) and hip circumferences were measured. The body mass index (BMI) was calculated. Total body fat, trunkal and abdominal fat were also assessed by dual energy x-ray absorptiometry (DXA). Glucose, insulin, HDL-Cholesterol, triglycerides (TG), ferritine, homocystein and C-reactive protein (CRP) were measured. Obesity status was related with insulin concentrations, CRP, TG and HDL. Obese patients had higher abdominal fat and higher CRP values than overweight and normal subjects. All markers of central body adiposity were related with insulin and lipid metabolism; however, they were not related with homocystein or ferritin. A simple anthropometric measurement, like waist circumference, seems to be a good predictor of the majority of the obesity related metabolic risk variables.  相似文献   

4.
Objective: Fatty acid (FA) composition has a role in adipogenesis. The objective was to study serum phospholipid (PL) FAs in adolescents and their relation to abdominal adipose tissue (AT) compartments and metabolic markers. Research Methods and Procedures: Abdominal AT was measured by magnetic resonance imaging and FA pattern was determined in serum PL of 10 obese adolescents (5 females), median age 12.0 years (range, 10.4 to 16.4) and BMI 30.7 (26.8 to 40.4), and 15 lean control subjects (9 females), median age 12.6 years (range, 11.3 to 15.4), and BMI 19.5 (17.1 to 23.4). Results: Obese adolescents had relatively higher levels of saturated FA (SFA) and nervonic acid compared with controls. Serum PL concentration of n‐3 polyunsaturated fatty acids (PUFA) was lower in the obese vs. lean females (p = 0.01), including docosahexaenoic acid (DHA) (p = 0.01). The ratios of arachidonic acid to DHA and total n‐6/n‐3 FA were increased in obese children (p = 0.02 and 0.01, respectively). n‐3 PUFAs were inversely correlated to all subcutaneous AT compartments except visceral AT. The homeostasis model assessment index of β‐cell function related inversely to DHA concentration (p = 0.03). All changes were more marked in the females. Discussion: Serum FA pattern in obese adolescents differed significantly from that in age‐matched lean controls, reflecting a decrease in n‐3 PUFA, especially DHA, and an increase in SFA. The subcutaneous AT, but not visceral AT, correlated to the changes in PUFA and SFA, suggesting an abnormal essential FA metabolism in obese adolescents.  相似文献   

5.
Objective: To compare subcutaneous adipose tissue topography (SAT‐top) in obese juveniles with age‐matched normal‐weight controls. Research Methods and Procedures: The optical device LIPOMETER (European Patent EP 0516251) enables the non‐invasive, rapid, safe, and precise measurement of the thickness of subcutaneous adipose tissue. Fifteen defined body sites (1 = neck to 15 = calf) characterize the individual SAT‐top like an individual fingerprint. SAT‐top of 1351 juveniles (obese: 42 boys, 59 girls, normal weight: 680 boys, 570 girls) from 7 to 19 years of age were measured. For visual comparison, the 15‐dimensional SAT‐top information was condensed by factor analysis into a two‐dimensional factor plot. Results: Both female and male obese juveniles had markedly increased adipose tissue layers at 7 = upper abdomen, 8 = lower abdomen, 5 = front chest, and 6 = lateral chest. The pubertal changes of body shape and fat distribution of the normal‐weight boys and girls (boys show thinner adipose tissue layers on their legs, whereas girls had thicker adipose tissue layers at the extremities) were not seen in the obese group. Independently of age and sex, all of the obese juveniles showed a similar, more android body fat distribution with increased trunk fat. Discussion: SAT‐top of the obese juveniles is similar to that of patients with type 2 diabetes, polycystic ovary syndrome, and coronary heart disease. Patients with these metabolic disorders and obese juveniles are located in the factor plot in the same area. This body shape may indicate a risk profile for developing polycystic ovary syndrome (women), type 2 diabetes, and early atherosclerosis (both sexes).  相似文献   

6.
The aim of this study was to investigate the frequency of metabolic syndrome (MS) variables in a group of spanish obese children and adolescents, to asses MS prevalence in this population and to describe it's relationship with other metabolic risk factors. 103 children were studied : 54 male and 49 female, mean age 10.08+/-2.3 with exogenous obesity. Obesity was defined when BMI was higher than the age and sex specific equivalent to 30 kg/m(2) in adults. MS variables considered were waist circumference, blood pressure, fasting blood triglycerides, fasting glucose/insulin and HDL-cholesterol. The children were considered as having the MS when three or more characteristics showed abnormal values according to Cook and De Ferranti definitions. HOMA index, ApoB and ApoA1 were studied too. The most frequent features of the metabolic syndrome were excess waist circumference and hypertension. The MS markers with the lowest frequency were dyslipidemia and fasting hyperglicemia. MS prevalence was 29,9% (Cook et al. criteria) and 50% (De Ferranti et al. criteria). Fasting insulin and HOMA index values increased significantly (p < 0.05) when three or more abnormalities of the MS variables were present. Apo B increased significantly only in females (p < 0.05) and Apo Al decreased significantly (p < 0.05) in both sexes when MS was present. Adequate metabolic syndrome risk factors criteria, mainly cut-off values, need to be defined in the European paediatric population.  相似文献   

7.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

8.
9.
10.

Background

Cold-stimulated adaptive thermogenesis in brown adipose tissue (BAT) to increase energy expenditure is suggested as a possible therapeutic target for the treatment of obesity. We have recently shown high prevalence of BAT in adult humans, which was inversely related to body mass index (BMI) and body fat percentage (BF%), suggesting that obesity is associated with lower BAT activity. Here, we examined BAT activity in morbidly obese subjects and its role in cold-induced thermogenesis (CIT) after applying a personalized cooling protocol. We hypothesize that morbidly obese subjects show reduced BAT activity upon cold exposure.

Methods and Findings

After applying a personalized cooling protocol for maximal non-shivering conditions, BAT activity was determined using positron-emission tomography and computed tomography (PET-CT). Cold-induced BAT activity was detected in three out of 15 morbidly obese subjects. Combined with results from lean to morbidly obese subjects (n = 39) from previous study, the collective data show a highly significant correlation between BAT activity and body composition (P<0.001), respectively explaining 64% and 60% of the variance in BMI (r = 0.8; P<0.001) and BF% (r = 0.75; P<0.001). Obese individuals demonstrate a blunted CIT combined with low BAT activity. Only in BAT-positive subjects (n = 26) mean energy expenditure was increased significantly upon cold exposure (51.5±6.7 J/s versus 44.0±5.1 J/s, P = 0.001), and the increase was significantly higher compared to BAT-negative subjects (+15.5±8.9% versus +3.6±8.9%, P = 0.001), indicating a role for BAT in CIT in humans.

Conclusions

This study shows that in an extremely large range of body compositions, BAT activity is highly correlated with BMI and BF%. BAT-positive subjects showed higher CIT, indicating that BAT is also in humans involved in adaptive thermogenesis. Increasing BAT activity could be a therapeutic target in (morbid) obesity.  相似文献   

11.

Background

During the development of obesity the expansion of white adipose tissue (WAT) leads to a dysregulation and an excessive remodeling of extracellular matrix (ECM), leading to fibrosis formation. These ECM changes have high impact on WAT physiology and may change obesity progression. Blocking WAT fibrosis may have beneficial effects on the efficacy of diet regimen or therapeutical approaches in obesity. Since dipeptidyl peptidase IV (DPP-IV) inhibitors prevent fibrosis in tissues, such as heart, liver and kidney, the objective of this study was to assess whether vildagliptin, a DPP-IV inhibitor, prevents fibrosis in WAT in a mouse model of obesity, and to investigate the mechanisms underlying this effect.

Methods

We evaluated the inhibitory effect of vildagliptin on fibrosis markers on WAT of high-fat diet (HFD)-induced obese mice and on 3T3-L1 cell line of mouse adipocytes treated with a fibrosis inducer, transforming growth factor beta 1 (TGFβ1).

Results

Vildagliptin prevents the increase of fibrosis markers in WAT of HFD-fed mice and reduces blood glucose, serum triglycerides, total cholesterol and leptin levels. In the in vitro study, the inhibition of DPP-IV with vildagliptin, neuropeptide Y (NPY) treatment and NPY Y1 receptor activation prevents ECM deposition and fibrosis markers increase induced by TGFβ1 treatment.

Conclusions

Vildagliptin prevents fibrosis formation in adipose tissue in obese mice, at least partially through NPY and NPY Y1 receptor activation.

General significance

This study highlights the importance of vildagliptin in the treatment of fibrosis that occur in obesity.  相似文献   

12.
Cellularity of obese and nonobese human adipose tissue   总被引:14,自引:0,他引:14  
  相似文献   

13.
14.

Background

Obesity is a major public health problem worldwide. Metabolic syndrome is a risk factor to the cardiovascular diseases. It has been reported that disruptions of the circadian clockwork are associated with and may predispose to metabolic syndrome.

Methodology and Principal Findings

8028 individuals attended a nationwide health examination survey in Finland. Data were collected with a face-to-face interview at home and during an individual health status examination. The waist circumference, height, weight and blood pressure were measured and samples were taken for laboratory tests. Participants were assessed using the ATP-III criteria for metabolic syndrome and with the Seasonal Pattern Assessment Questionnaire for their seasonal changes in mood and behavior. Seasonal changes in weight in particular were a risk factor of metabolic syndrome, after controlling for a number of known risk and potential confounding factors.

Conclusions and Significance

Metabolic syndrome is associated with high global scores on the seasonal changes in mood and behavior, and with those in weight in particular. Assessment of these changes may serve as a useful indicator of metabolic syndrome, because of easy assessment. Abnormalities in the circadian clockwork which links seasonal fluctuations to metabolic cycles may predispose to seasonal changes in weight and to metabolic syndrome.  相似文献   

15.
16.
17.
Omental and subcutaneous adipose tissue steroid levels in obese men   总被引:4,自引:0,他引:4  
We examined plasma and fat tissue sex steroid levels in a sample of 28 men aged 24.8-62.2 years (average BMI value of 46.3 +/- 12.7 kg/m(2)). Abdominal adipose tissue biopsies were obtained during general or obesity surgery. Omental and subcutaneous adipose tissue steroid levels were measured by gas chromatography and chemical ionization mass spectrometry after appropriate extraction procedures. BMI and waist circumference were negatively correlated with plasma testosterone (r = -0.49 and -0.50, respectively, p < 0.01) and dihydrotestosterone (r = -0.58 and -0.56, respectively, p < 0.01), and positively associated with estrone levels (r = 0.64 and 0.62, respectively, p < 0.001). Regional differences in adipose tissue steroid levels were observed for dihydrotestosterone (p < 0.005), androstenedione (p < 0.0001) and dehydroepiandrosterone levels (p < 0.05), which were all significantly more concentrated in omental versus subcutaneous fat. Positive significant associations were found between circulating level of a steroid and its concentration in omental and subcutaneous adipose tissue, for estrone (r = 0.72 and 0.57, respectively, p < 0.01), testosterone (r = 0.66 and 0.58, respectively, p < 0.01) and dihydrotestosterone (r = 0.58 and 0.45, respectively, p < 0.05). Positive correlations were observed between plasma dehydroepiandrosterone-sulfate and omental (r = 0.56, p < 0.01) as well as subcutaneous adipose tissue dehydroepiandrosterone level (r = 0.38, p = 0.05). Positive significant associations were found between omental adipocyte responsiveness to positive lipolytic stimuli (isoproterenol, dibutyryl cyclic AMP and forskolin) and plasma or omental fat tissue androgen levels. In conclusion, although plasma androgen or estrogen levels are strong correlates of adipose tissue steroid content both in the omental and subcutaneous fat depots, regional differences may be observed. Androgen concentration differences in omental versus subcutaneous adipose tissue suggest a depot-specific impact of these hormones on adipocyte function and metabolism.  相似文献   

18.
19.
20.
Dihydrosphingolipids are lipids biosynthetically related to ceramides. An increase in ceramides is associated with enhanced fat storage in the liver, and inhibition of their synthesis is reported to prevent the appearance of steatosis in animal models. However, the precise association of dihydrosphingolipids with non-alcoholic fatty liver disease (NAFLD) is yet to be established. We employed a diet induced NAFLD mouse model to study the association between this class of compounds and disease progression. Mice fed a high-fat diet were sacrificed at 22, 30 and 40 weeks to reproduce the full spectrum of histological damage found in human disease, steatosis (NAFL) and steatohepatitis (NASH) with and without significant fibrosis. Blood and liver tissue samples were obtained from patients whose NAFLD severity was assessed histologically. To demonstrate the effect of dihydroceramides over NAFLD progression we treated mice with fenretinide an inhibitor of dihydroceramide desaturase-1 (DEGS1). Lipidomic analyses were performed using liquid chromatography-tandem mass spectrometry. Triglycerides, cholesteryl esters and dihydrosphingolipids were increased in the liver of model mice in association with the degree of steatosis and fibrosis. Dihydroceramides increased with the histological severity observed in liver samples of mice (0.024 ± 0.003 nmol/mg vs 0.049 ± 0.005 nmol/mg, non-NAFLD vs NASH-fibrosis, p < 0.0001) and patients (0.105 ± 0.011 nmol/mg vs 0.165 ± 0.021 nmol/mg, p = 0.0221). Inhibition of DEGS1 induce a four-fold increase in dihydroceramides improving steatosis but increasing the inflammatory activity and fibrosis. In conclusion, the degree of histological damage in NAFLD correlate with dihydroceramide and dihydrosphingolipid accumulation.Lay summaryAccumulation of triglyceride and cholesteryl ester lipids is the hallmark of non-alcoholic fatty liver disease. Using lipidomics, we examined the role of dihydrosphingolipids in NAFLD progression. Our results demonstrate that de novo dihydrosphingolipid synthesis is an early event in NAFLD and the concentrations of these lipids are correlated with histological severity in both mouse and human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号