首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A Na/Ca exchange system has been described in the plasma membrane of several tissues and seems to regulate the concentration of calcium in cytosol. Replacement of extracellular Na by sucrose increases calcium uptake into and decreases calcium efflux from the cell, leading to an increase in cytosolic calcium. The effect of an increase in cytosolic calcium mediated by the Na/Ca exchange system on H+ and Na transport in the turtle and toad bladder was investigated by replacing serosal Na isosmotically by sucrose or choline. Replacement of serosal by sucrose was associated with a significant inhibition of H+ secretion or Na transport which was reversible by addition of NaCl. Replacement of mucosal Na by sucrose failed to alter H+ secretion. Removal of serosal Na was associated with a significant increase in45Ca uptake which could be blocked by pretreatment with lanthanum chloride. Pretreatment with lanthanum chloride blunted the inhibitory effect of replacement of serosal Na by sucrose on H+ and Na transport, thus suggesting that the increase in calcium uptake and the inhibition of transport are causally related. Under anaerobic conditions the rate of H+ or Na transport are linked to the rate of lactate production. The inhibition of Na or H+ transport by removal of serosal Na was accompanied by a proportional decrease in lactate production, thus suggesting that an increase in cytosolic calcium does not inhibit transport by uncoupling glycolysis from transport. Replacement of serosal Na by sucrose did not alter the force of the H+ or Na pump but led to an increase in resistance of the active pathway of H+ and Na transport. The inhibition of Na transport by replacement of serosal Na with sucrose could be reversed by addition of amphotericin B, an agent which increases luminal permeability to Na, thus suggesting that decreased Na entry across the apical membrane is the mechanism responsible for the inhibition of Na transport. The results of the present studies strongly suggest that an increase in cytosolic calcium through the serosal Na/Ca exchange system inhibits H+ and Na transport in the turtle and toad bladder probably by increasing the resistance of the luminal membrane.  相似文献   

2.
We have used dialyzed squid axons to characterize the ouabain- and bumetanide-insensitive Na efflux components and their relation to the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions containing nearly physiological concentrations of K, Na, and Mg, three components of the Na efflux can be distinguished: Cai-activated, Cao-dependent Na efflux ("reverse" Na/Ca exchange); Cai-activated, Nao-dependent Na efflux; and Cai-independent, ATP-activated, Nao-dependent Na efflux. We have studied the effects of internal alkalinization, Mgi, Cao, and the ATP analogue [gamma-thio]ATP (ATP gamma S) on the different components of the Na efflux. The results show the following: (a) internal alkalinization activates both Cao- and Nao-dependent Na efflux components provided that Cai is present; (b) Mgi inhibits both the Cai-activated, Cao- and Nao-dependent Na efflux components; (c) Cao inhibits the Nao-dependent component by competition for a common site; (d) ATP gamma S activates both Nao- and Cao-dependent Na efflux components only in the presence of Cai; and (e) ATP activates the Nai/Nao and Nai/Cao exchanges, causing a 10-fold increase in the affinity of the reverse Na/Ca exchange toward Cai. In the absence of Cai, ATP stimulates an Nao-dependent Na efflux that is not affected either by internal alkalinization or high Cao. The ATP analogue does not activate the Cai-independent Na/Na exchange system. These experiments demonstrate that the Cai-activated Na/Na exchange is a mode of operation of the Na/Ca exchange mechanism that substantially contributes to Na movement during the activation of the Na/Ca antiporter. The experimental evidence obtained on the Cai-independent Na/Na exchange component shows that this system is not part of the Na/Ca exchange.  相似文献   

3.
Sodium influx in serum-deprived human fibroblasts is by way of a pathway which shows saturation kinetics. A plot of initial Na influx versus [Na]0 ([Na]i approximately equal to 10 mM) gives a simple Michaelis-Menten type of curve with a K1/2 = 70.0 +/- 8.1 mM and a Vmax = 14.5 +/- 1.9 mumol/g prot/min. A similar plot of initial Na influx versus [Na]0 in the presence of 10% fetal bovine serum (FBS) gives a nonsaturating curvilinear response which appears to be biphasic. A plot of the serum-dependent Na influx versus [Na]0 (obtained by subtracting the curve in the absence of FBS from the curve in the presence of 10% FBS) shows that there is a linear relationship between serum-induced Na influx and external [Na]. At physiological Na concentrations, in the presence of FBS, the serum-induced Na influx is equal to the amiloride-sensitive Na flux, whereas in the absence of serum amiloride inhibits less than 10% of the Na influx. The effect of intracellular Na on Na flux was tested by preloading cells with Na in a digitoxin-containing medium prior to measurement of Na flux. A plot of steady-state Na exchange flux versus [Na]0 ([Na]i approximately equal to [Na]0) in the absence of serum gives a curve that appears to saturate at approximately 100 mM Na (flux = 100 mumol/g prot/min) and then declines with increasing [Na] (flux = 40 mumol/g prot/min at 150 mM). In contrast to Na influx in control serum-deprived cells, Na flux in Na-loaded cells in dramatically inhibited by the presence of amiloride. Since the peak Na exchange flux of 100 mumol/g prot/min is greatly in excess of the Vmax for Na influx in control serum-deprived cells and the enhanced Na flux is amiloride-sensitive, elevating intracellular Na must somehow activate the amiloride-sensitive Na transport system, which is normally only minimally active in the absence of serum.  相似文献   

4.
Although the phenotypes of many membrane-excitation mutants of Paramecium are best expressed in Na+-containing solutions, little is known about the role of Na+ in membrane excitation in Paramecium. By measuring 22Na fluxes, we have shown that: (a) The total cellular Na+ content is equivalent to a cytoplasmic concentration of 3--4 mM, if the Na+ concentration is uniform throughout the cell. (b) The kinetics of Na+ uptake can be divided into a saturable Na+ uptake with an apparent Km = 0.15 mM and a nonsaturable Na+ uptake seen at higher Na+ concentrations up to 20 mM. (c) The rate of Na+ uptake in high Na+ solutions is correlated with the duration of backward swimming and membrane excitation in wild type Paramecium and the mutants fast-2 and paranoiac. (d) Na+ uptake is inhibited at 4 degrees C. From these results, we postulate that Na+ uptake is faster when the membrane is depolarized than when it is at the resting potential level.  相似文献   

5.
D L Clough 《Life sciences》1985,37(9):799-807
In the present study, rat renal Na+,K+-ATPase was found to be more sensitive to inhibition by high Na+ concentrations (100-400 mM) than was rat cardiac Na+,K+-ATPase. K+ was more effective in reversing the inhibition by Na+, of cardiac relative to renal Na+,K+-ATPase. Rat renal Na+,K+-ATPase was also more sensitive than cardiac Na+,K+-ATPase to inhibition by vanadate over this range of Na+ concentrations. These results support the hypothesis that vanadate may selectively regulate Na+,K+-ATPase in the kidney, and they may also help explain the natriuretic and diuretic effects of vanadate in rats. Inhibition of renal Na+,K+ATPase by Na+, may also help explain, in part, the natriuretic and diuretic effects of acute saline loading.  相似文献   

6.
The effect of different concentrations of dietary Na from three Na salts (NaCl, NaHCO3 and Na2SO4) was assessed in two experiments carried out on broiler chickens aged from 1 to 35 days. In Exp. 1, diets were supplemented with 0.15, 0.20 and 0.25% Na, which increased the average Na content of the diets to 0.19, 0.24 and 0.30% respectively. In Exp. 2, the amounts of selected Na salts (NaCI and Na2SO4) were reduced and the estimated Na contents of experimental diets amounted to 0.10, 0.13, 0.15 and 0.19%. In view of the risk factors for the development of foot pad dermatitis, our aim was to find an optimum source of Na and to keep dietary Na intake at the minimum level sufficient to support normal growth and acceptable slaughter quality. The present results suggest that the amount of Na required for the undisturbed growth of broilers and adequate feed conversion is not less than 0.15% of additional Na in the starter period (1-14 d), and not less than 0.11% in the grower period (until day 35). Higher dietary Na levels did not lead to further production advantages, and were found to increase the moisture content of droppings. Dry matter concentration of excreta was also affected by Na source. In comparison with NaHCO3, Na2SO4 seemed to be a better alternative for NaCl. Na2SO4 also tended to surpass NaHCO3 as a dietary alternative for NaCl in terms of feed utilisation during the starter period. The applied additional Na levels (0.25 and 0.15%) and Na sources had no effect on the sensory profile and composition of breast meat.  相似文献   

7.
We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.  相似文献   

8.
Cells of Porphyra perforata, a red marine alga, accumulate K in the absence of concomitant Na or Li extrusion while immersed in Li- or Mg-sea waters lacking Na. This suggests that the coupling observed between K and Na transport is facultative. No evidence is obtained for net extrusion of Li. Na efflux, with the concentration gradient, is facilitated by K and is proportional to the cellular Na content. Either Na efflux does not involve an ion carrier or the number of Na sites is large. Because K accumulation has been observed in the absence of Na extrusion, but not vice versa, it seems that K uptake is the primary secretory event, with Na extrusion a secondary process dependent upon K accumulation.  相似文献   

9.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

10.
在有K无Na、有Na无K、无K无Na三种培养液中培养番茄和玉米幼苗,试验表明,在有Na无K液的培养下,番茄和玉米幼苗叶片游离脯氨酸含量比无K无Na溶液培养的低;可溶性糖含量和叶绿素a/b比值比无K无Na溶液培养的高;Na可以提高过氧化物酶活性。因此,在一定程度上Na可代替K对番茄、玉米幼苗的生长起促进作用。  相似文献   

11.
Na/H exchange-dependent cell volume and pH regulation and disturbances   总被引:1,自引:0,他引:1  
1. The role of Na/H exchange in cell volume and pH regulation is discussed. In addition the roles of Cl/HCO3 exchange and system buffers are evaluated as they relate to Na/H exchange-dependent changes in cell salt and water content and intracellular pH. 2. Data obtained from studies of Amphiuma red blood cells showed that in addition to previously reported Na/H exchange dependent volume regulation the pathway is also involved in regulating cell pH. 3. These data showed that in contrast to volume activated Na/H exchange, when the pathway is pH activated it does not deactivate as a function of cell volume. 4. Given what appeared to be mutually exclusive volume and pH regulatory functions of the Na/H exchange, we hypothesized that the pathway might play a role in hypoxic cell swelling (cytotoxic edema). 5. In studies performed on perfused rabbit hearts employing 23Na NMR we were able to observe that relative to normoxic controls hypoxic hearts exhibited a five-fold increase in intracellular Na content when the Na-K pump was inhibited by ouabain and/or K-free perfusate. 6. These studies lead us to conclude that hypoxia-induced Na uptake is the result of an increased inward Na leak as opposed to decreased Na pumping. 7. Based upon studies with a variety of inhibitors of dissipative Na transport, we conclude that the increased inward Na leak in hypoxic hearts is via Na/H exchange.  相似文献   

12.
This paper reports experiments designed to find the concentrations of internal and external Na and K at which inward and outward furosemide-sensitive (FS) Na and K fluxes are equal, so that there is no net FS movement of Na and K. The red cell cation content was modified by using the ionophore nystatin, varying cell Na (Nai) from 0 to 34 mM (K substitution, high-K cells) and cell K (Ki) from 0 to 30 mM (Na substitution, high-Na cells). All incubation media contained NaCl (Nao = 130 or 120 nM), and KCl (Ko = 0-30 mM). In high-K cells, incubated in the absence of Ko, there was net extrusion of Na through the FS pathway. The net FS Na extrusion increased when Nai was increased. Low concentrations of Ko (0-6 mM) slightly stimulated, whereas higher concentrations of Ko inhibited, FS Na efflux. Increasing Ko stimulated the FS Na influx (K0.5 = 4 mM). Under conditions similar to those that occur in vivo (Nai = 10, Ki = 130, Nao = 130, Ko = 4 mM, Cli/Clo = 0.7), net extrusion of Na occurs through the FS pathway (180-250 mumol/liter cell X h). The concentration of Ko at which the FS Na influx and efflux and the FS K influx and efflux become equal increased when Nai increased in high-K cells and when Ki was increased in high-Na cells. The net FS Na and K fluxes both approached zero at similar internal and external Na and K concentrations. In high-K cells, under conditions when net Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional flux was found to be 2:3. In high-K cells, the empirical expression (Nai/Nao)2(Ki/Ko)3 remained at constant value (apparent equilibrium constant, Kappeq +/- SEM = 22 +/- 2) for each set of internal and external cation concentrations at which there was no net Na flux. These results indicate that in the physiological region of concentrations of internal and external Na, K, and Cl, the stoichiometry of the FS Na and K fluxes is 2 Na:3 K. In high-Na cells under conditions when net FS Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional fluxes was 3:2 (1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
陈敏  彭建云  王宝山 《植物学报》2008,25(4):381-391
植物可以利用不同的机制来维持Na+稳态, 从而增强植物的抗盐性。这些机制包括: 限制Na+的内流; 增大Na+的外排; 减少Na+向地上部分的运输; 把进入地上部分的Na+分散到特殊部分(如老叶)或通过泌盐结构排出体外或通过韧皮部的再循环回到根部。本文简要介绍整株水平上Na+转运体与植物抗盐性的研究进展。  相似文献   

14.
Sodium and proton transport in Mycoplasma gallisepticum.   总被引:8,自引:6,他引:2       下载免费PDF全文
When washed cells of Mycoplasma gallisepticum were incubated at 37 degrees C in 250 mM 22NaCl, the intracellular Na+ increased, and the K+ decreased. The addition of glucose to these Na+-loaded cells caused Na+ efflux and K+ uptake (both ions moving against concentration gradients). This effect of glucose was blocked by the ATPase inhibitor dicyclohexylcarbodiimide, which prevents the generation of a proton motive force in these cells. In additional experiments, Na+ extrusion was studied by diluting the 22Na+-loaded cells into Na+-free media and following the loss of 22Na+ from the cells. Glucose stimulated 22Na+ extrusion in such cells by a dicyclohexylcarbodiimide-sensitive mechanism. Proton movement was studied by measuring the pH gradient across the cell membrane with the 9-aminoacridine fluorescence technique. Glucose addition to cells preincubated with cations other than Na+ resulted in cell alkalinization (which was prevented by dicyclohexylcarbodiimide). This observation is consistent with the operation of a proton-extruding ATPase. When glucose was added to Na+-loaded cells and diluted into Na+-free media, intracellular acidification was observed, followed several minutes later by a dicyclohexylcarbodiimide-sensitive alkalinization process. The initial acidification was probably due to the operation of an Na+-H+ antiport, since Na+ exit was occurring simultaneously with H+ entry. When Na+-loaded cells were diluted into Na+-containing media, the subsequent addition of glucose resulted in a weak acidification, presumably due to H+ entry in exchange for Na+ (driven by the ATPase) plus a continuous passive influx of Na+. All of the data presented are consistent with the combined operation of an ATP-driven proton pump and an Na+ -H+ exchange reaction.  相似文献   

15.
The Ruthenium Red-insensitive efflux of Ca2+ from previously loaded rat liver mitochondria was studied as a function of the added Na+ concentration and ADP present. Stimulation of Ca2+ efflux is sigmoidally dependent on the Na+ concentration; maximal stimulation of efflux was observed with 12--15 mM-NaCl. Na+-stimulated Ca2+ efflux from liver mitochondria is about one-tenth that from cardiac mitochondria. No synergistic effect of K+ on the Na+-stimulated efflux was found. The alkali-metal cations other than Na+ did not stimulate efflux and did not prevent stimulation by Na+. In the absence of Na+, Ca2+ efflux was diminished by added ADP, but the Na+-stimulated efflux was made correspondingly greater as ADP concentration was increased to 16 microM. The Na+-stimulated Ca2+ efflux was inhibited by 70% by oligomycin and was not observed in the presence of antimycin. It is suggested that failure to observe Na+-stimulation of Ca2+ efflux from liver mitochondria by some investigators is attributable to a high basal efflux existing before addition of the Na+ salt.  相似文献   

16.
Despa S  Bers DM 《Biophysical journal》2003,84(6):4157-4166
Na/K pump current (I(pump)) and intracellular Na concentration ([Na](i)) were measured simultaneously in voltage-clamped rabbit ventricular myocytes, under conditions where [Na](i) is controlled mainly by membrane transport. Upon abrupt pump reactivation (after 10-12 min blockade), I(pump) decays in two phases. Initially, I(pump) declines with little [Na](i) change, whereas the second phase is accompanied by [Na](i) decline. Initial I(pump) sag was still present at external [K] = 15 mM, but prevented by [Na](i) approximately 100 mM. Initial I(pump) sag might be explained by subsarcolemmal [Na](i) ([Na](SL)) depletion produced by rapid Na extrusion and I(pump). Brief episodes of pump blockade allowed [Na](SL) repletion, since peak postblockade I(pump) exceeded I(pump) at the end of previous activation (without appreciably altered global [Na](i)). The apparent K(m) for [Na](i) was higher for continuous I(pump) activation than peak I(pump) (14.1 +/- 0.2 vs. 11.2 +/- 0.2 mM), whereas that based on d[Na](i)/dt matched peak I(pump) (11.6 +/- 0.3 mM). [Na](SL) depletion (vs. [Na](i)) could be as high as 3 mM for [Na](i) approximately 18-20 mM. A simple diffusion model indicates that such [Na](SL) depletion requires a Na diffusion coefficient 10(3)- to 10(4)-fold below that expected in bulk cytoplasm (although this could be subsarcolemmal only). I(pump) integrals and [Na](i) decline were used to estimate intracellular Na buffering, which is slight (1.39 +/- 0.09).  相似文献   

17.
Smolts exhibited decreases in plasma Na+ levels after 7 days and lower Na+, K+-ATPase activities 14 days after acid exposure. Parrs exhibited decreased plasma Na+ after 24 hr acid exposure. Plasma Na+ increased and Na+, K+-ATPase decreased in smolts after transfer to seawater. Parrs exhibited increased plasma Na+ as well as Na+, K+-ATPase activity immediately after transfer to seawater. It was concluded that acid exposure prior to entry into seawater was detrimental to coho salmon with regard to the length of acid exposure and stage of development. A possible mechanism by which fish die from acid stress is inhibition of gill Na+, K+-ATPase concomitant with decreases in plasma Na+ levels.  相似文献   

18.
陈刚  杨威  孙国荣  彭永臻  周晓阳  周卫东  杜坤  张彪 《生态学报》2007,27(12):5408-5413
对不同强度Na2CO3胁迫处理下星星草幼苗叶片表皮和叶肉细胞中K、Na的透射电镜X-射线电子探针显微分析和叶片表面扫描电镜X-射线电子探针显微分析,结果表明:在相同胁迫强度下,无论是表皮细胞还是叶肉细胞的细胞壁和液泡中的Na相对含量均明显高于细胞质中的Na相对含量,并且K的相对含量均明显比相应部位Na的相对含量高,细胞壁与液泡中的Na相对含量变化范围非常接近。在Na2CO3胁迫浓度低于0.1molL^-1时,在相同胁迫强度下,K的相对含量高于Na的相对含量,使细胞质保持相对高的K/Na比。而尽管向细胞壁和液泡分流了大量的Na,但是细胞质中的Na相对含量仍然随着Na2CO,胁迫强度的增加而增加,一方面证明星星草在Na2CO3胁迫下维持相对高的K/Na比的能力是有一定限度的,另一方面暗示星星草作为盐生植物在盐碱环境中一定程度上Na可以部分地代替K而行使部分K的生理功能。  相似文献   

19.
《The Journal of cell biology》1984,98(3):1082-1089
Initiation of DNA synthesis in confluent quiescent 3T3 cell cultures stimulated by epidermal growth factor (EGF), vasopressin, and insulin was abolished by removing extracellular Na+. The inhibition was reversible, time- and Na+-concentration-dependent, and not due to an effect on binding or internalization of 125I-EGF. Stimulation by combinations of other growth factors with different mechanisms of action was also affected by decreasing extracellular Na+, but with different half-maximal Na+ concentrations. When choline was used as an osmotic substitute for Na+, the decrease in DNA synthesis was correlated with the decrease in intracellular K+. In contrast, when sucrose was used there was stimulation of the Na+-K+ pump and maintenance of intracellular K+ that resulted in a somewhat higher rate of DNA synthesis at lowered extracellular Na+ compared to choline. Mitogenesis induced by epidermal growth factor, vasopressin, and insulin led to cytoplasmic alkalinization as determined by an increase in uptake of the weak acid 5,5-dimethyloxazolidine-2,4-dione. Experimental decrease in extracellular Na+ blocked this cellular alkalinization. Therefore, under some conditions the supply of extracellular Na+ may limit cellular proliferation because of a reduction in the provision of Na+ to the Na+/H+ antiport and resultant failure of alkalinization. We conclude that Na+ flux and its effect on intracellular K and pH has a major role in the complex system that regulates proliferation.  相似文献   

20.
Hormonal control of the Na+,K+-pump modulates membrane potential in mammalian cells, which in turn drives ion coupled transport processes and maintains cell volume and osmotic balance. Na+,K+-pump regulation is particularly important in the musculoskeletal, cardiovascular and renal systems. Decreased Na+,K+-pump activity can result in a rise in intracellular Na+ concentrations which in turn increase Na+/Ca2+ exchange, thereby raising intracellular Ca2+ levels. In cardiac and skeletal muscle, this could interfere with normal contractile activity. Similarly, in vascular smooth muscle the result would be resistance to vasodilation. Inhibition of the Na+,K+-pump can also reduce the driving force for renal tubular Na+ reabsorption, elevating Na+ excretion. By virtue of decreasing the membrane potential, thus allowing more efficient depolarization of nerve endings and by increasing intracellular Ca2+, inhibition of the Na+,K+-pump can increase nervous tone. The ability of insulin to stimulate the Na+,K+-pump in various cells and tissues, and the physiological significance thereof, have been well documented. Much less is known about the effect of leptin on the Na+,K+-pump. We have shown that leptin inhibits Na+,K+-pump function in 3T3-L1 fibroblasts. Defects in insulin and leptin action are associated with diabetes and obesity, respectively, both of which are commonly associated with cardiovascular complications. In this review we discuss the mechanisms of Na+,K+-pump regulation by insulin and leptin and highlight how, when they fail, they may contribute to the pathophysiology of hypertension associated with diabetes and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号