共查询到20条相似文献,搜索用时 0 毫秒
1.
It is shown that glycoprotein from bovine heart mitochondria which forms Ca2+-selective conductance channels in a bilayer lipid membrane possesses Ca2+-binding activity. Ca2+-binding sites of two kinds were revealed in the glycoprotein molecule: high affinity sites with Kd = 2.8 X 10(-6) M and low affinity sites with Kd 1.1 X 10(-5) M. Ca2+-binding by the high affinity sites occurs co-operatively. The Hill coefficient is about 2. 相似文献
2.
James Hughes Saroj Joshi Katalin Torok D. Rao Sanadi 《Journal of bioenergetics and biomembranes》1982,14(5-6):287-295
The lysolecithin extraction procedure originally described by Sadleret al. (1974) has been modified to yield a H+-ATPase with high levels of Pi-ATP exchange activity (400–600 nmol × min–1 × mg–1). This activity is further enhanced (1400–1600 nmol × min–1 × mg–1) following sucrose density gradient centrifugation in the presence of asolectin. This enhancement results in part from a lipid-dependent activation and in part from removal of inactive complexes. The H+ translocating activity of the complex has been determined spectrophotometrically using binding of oxonol VI as an indicator of membrane potential. Pi-ATP exchange, ATP hydrolysis, and oxonol binding are sensitive to energy-transfer inhibitors (oligomycin, rutamycin) and/or uncouplers (DNP, FCCP). 相似文献
3.
Marianne S. Jurkowitz Gerald P. Brierley 《Journal of bioenergetics and biomembranes》1982,14(5-6):435-449
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction. 相似文献
4.
E J Harris 《The Biochemical journal》1979,178(3):673-680
The efflux of Ca2+ from rat heart mitochondria has been examined by using Ruthenium Red to inhibit active uptake after predetermined loadings with Ca2+. The efflux is proportional to the internal Ca2+ load; it is increased by Na+ applied when the mitochondria are respiring and this effect is inhibited by oligomycin. The efflux of Ca2+ is diminished by ATP and by ADP, with the latter the more effective. Both active uptake and efflux of Ca2+ are slowed by bongkrekic acid; this action has a time lag. The lower efflux found with the nucleotides and with bongkrekic acid seems to correspond to the more condensed state seen in the electron microscope when these agents are applied [Stoner & Sirak (1973) J. Cell Biol. 56, 51-64, 65-73]. The results are discussed in relation to the less-permeable state being contingent upon nucleotide binding to the membrane. 相似文献
5.
G A Blondin 《Biochemical and biophysical research communications》1974,56(1):97-105
6.
7.
Slinchenko NM 《Ukrainski? biokhimicheski? zhurnal》2000,72(3):56-60
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell. 相似文献
8.
Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria 总被引:1,自引:0,他引:1
M S Jurkowitz T Geisbuhler D W Jung G P Brierley 《Archives of biochemistry and biophysics》1983,223(1):120-128
The uncoupler-induced release of accumulated Ca2+ from heart mitochondria can be separated into two components, one sensitive and one insensitive to ruthenium red. In mitochondria maintaining reduced NAD(P)H pools and adequate levels of endogenous adenine nucleotides, the release of Ca2+ following addition of an uncoupler is virtually all inhibited by ruthenium red and can be presumed to occur via reversal of the Ca2+ uniporter. When ruthenium red is added to block efflux via this pathway, high rates of Ca2+ efflux can still be induced by an uncoupler, provided either NADH is oxidized or mitochondrial adenine nucleotide pools are depleted by prior treatment. This ruthenium red-insensitive Ca2+-efflux pathway is dependent on the level of Ca2+ accumulated and is accompanied by swelling of the mitochondria and loss of endogenous Mg2+. Loss of Ca2+ by this relatively nonspecific pathway is strongly inhibited by Sr2+ and by nupercaine, as well as by oligomycin and exogenous adenine nucleotides. The loss of Ca2+ from uncoupled heart mitochondria occurs via a combination of these two mechanisms except under conditions chosen specifically to limit efflux to one or the other pathway. 相似文献
9.
Isolation of Ca2+-tolerant myocytes from adult rat heart 总被引:1,自引:0,他引:1
A procedure for the isolation of myocytes from adult rat hearts is described. It is based on successive treatments with Ca2+-free medium, disaggregating enzymes (collagenase and hyaluronidase) and mechanical agitation. Several recent isolation methods were compared and their best features were combined, together with some original modifications. A good yield of high purity myocytes with excellent morphological and functional integrity was obtained. The cells are tolerant to physiological concentrations of Ca2+. Cellular levels of ATP, Na+, and K+ are close to those in intact hearts and glucose oxidation rates and succinate exclusion are also close to normal. These characteristics are maintained for periods over 1 h. 相似文献
10.
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
11.
An obligatory early step in the transport of calcium across the internal membranes of smooth muscle cells is the binding of calcium to the Ca,Mg-ATPase. The characterization of calcium binding to sarcoplasmic reticulum from smooth muscle has not been reported. Calcium binding to a bovine myometrium preparation was investigated using Scatchard analysis and a computer program utilizing weighted least squares curve fitting and an exact mathematical model of binding. This permitted objective measurement of goodness of fit and showed that best fit was obtained using a two site model. Magnesium did not change the affinity for calcium of the two sites; but reduced the number of low affinity sites to half. 相似文献
12.
The Na+-induced release of accumulated Ca2+ from heart mitochondria is inhibited by amiloride, benzamil and several other amiloride analogues. These drugs do not affect uptake or release of Ca2+ mediated by the ruthenium red-sensitive uniporter and their effects, like those of diltiazem and other Ca2+-antagonists, appear to be localized principally at the Na+/Ca2+ antiporter of the mitochondrion. Benzamil inhibits Na+/Ca2+ antiport non-competitively with respect to [Na+] with a Ki of 167 microM. In the presence of 1.5 mM Pi the Ki for benzamil inhibition of this reaction is decreased to 87 microM. 相似文献
13.
Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets 总被引:18,自引:0,他引:18
F A O'Rourke S P Halenda G B Zavoico M B Feinstein 《The Journal of biological chemistry》1985,260(2):956-962
Human platelet membrane vesicles that accumulated Ca2+ in the presence of ATP were isolated on an isoosmotic KCl-Percoll gradient. ATP-dependent Ca2+ uptake was stimulated by oxalate and phosphate to steady-state levels of greater than 100 nmol/mg protein, and the accumulated Ca2+ could be largely released by ionophore A23187. Inositol 1,4,5-trisphosphate, in a dose-dependent manner (0.5-5.0 microM), caused the rapid release (less than 5 s) of 40-70% of the total A23187-releasable store of accumulated Ca2+. The membrane vesicles that release accumulated Ca2+ in response to inositol 1,4,5-trisphosphate were enriched in enzymes characteristically found in smooth endoplasmic reticulum. These results support the hypothesis that inositol 1,4,5-trisphosphate, produced by the hydrolysis of phosphatidylinositol 1,4-bisphosphate in response to stimulation of cell surface receptors, is a second messenger mediating the release of Ca2+ from intracellular storage sites. 相似文献
14.
15.
16.
Two highly purified proteins with quite different properties capable of oxaloacetate keto-enol-tautomerase activity (oxaloacetate keto-enol-isomerase, EC 5.3.2.2) were isolated from the bovine heart mitochondrial matrix. The first protein has an apparent molecular mass of 37 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-200 gel filtration. It is quite stable upon storage at 40 degrees C and reaches the maximal catalytic activity at pH 8.5 with a half-maximal activity at pH 7.0. The enzyme is specifically inhibited by oxalate and diethyloxaloacetate. When assayed in the enol----ketone direction at 25 degrees C (pH 9.0), the enzyme obeys a simple substrate saturation kinetics with Km and Vmax values of 45 microM and 74 units per mg of protein, respectively; the latter value corresponds to the turnover number of 2700 min-1. The second protein has an apparent molecular mass of 80 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-300 gel filtration. The enzyme is rapidly inactivated at 40 degrees C and shows a sharp pH optimum of activity at pH 9.0. The enzyme can be completely protected from thermal inactivation by oxaloacetate and dithiothreitol. The kinetic parameters of the enzyme as assayed in the enol----ketone direction at 25 degrees C (pH 9.0) are: Km = 220 microM and Vmax = 20 units per mg of protein; the latter corresponds to the turnover number of 1600 min-1. The enzyme activity is specifically inhibited by maleate and pyrophosphate. About 30% of the total oxaloacetate tautomerase activity in crude mitochondrial matrix is represented by the 37 kDa enzyme and about 70% by the 80 kDa protein. 相似文献
17.
G E Shull 《European journal of biochemistry》2000,267(17):5284-5290
The biochemical functions of intracellular and plasma membrane Ca2+-transporting ATPases in the control of cytosolic and organellar Ca2+ levels are well established, but the physiological roles of specific isoforms are less well understood. There appear to be three different types of Ca2+ pumps in mammalian tissues: the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), which sequester Ca2+ within the endoplasmic or sarcoplasmic reticulum, the plasma membrane Ca2+-ATPases (PMCAs), which extrude Ca2+ from the cell, and the putative secretory pathway Ca2+-ATPase (SPCA), the function of which is poorly understood. This review describes the results of recent analyses of mouse models with null mutations in the genes encoding SERCA and PMCA isoforms and genetic studies of SERCA and SPCA dysfunction in both humans and model organisms. These studies are yielding important insights regarding the physiological functions of individual Ca2+-transporting ATPases in vivo. 相似文献
18.
《Archives of biochemistry and biophysics》1968,125(3):884-894
Phosphoryl transferase, a mitochondrial protein which increases the phosphorylative capacity of poorly phosphorylating submitochondrial particles and catalyzes an ATP-ADP exchange reaction, is phosphorylated during oxidation either of succinate or pyruvate-malate. Inhibitors of oxidative phosphorylation and electron transfer, as well as uncouplers of oxidative phosphorylation, inhibit the phosphorylation of the transferase when phosphorylation is mediated by electron transfer. The protein is also phosphorylated by ATP, the donor group being specifically the terminal phosphate of ATP. The transphosphorylation reaction is not inhibited by inhibitors of electron transfer and coupled phosphorylation, nor by uncouplers of oxidative phosphorylation. The phosphoryl form of the transferase can phosphorylate ADP in the presence of hexokinase, glucose, and magnesium ion, but the transfer is only 50% complete. During this transfer reaction a portion of the protein-bound phosphate becomes transformed to an acid-stable form. Phosphorus is released from phosphoryl transferase as inorganic orthophosphate at pH 4 and 10 and by heat, but is relatively stable at pH 7.5 at 0 °. Hydroxylamine also induces release of protein-bound phosphorus as inorganic phosphate. The possible role of the phosphoryl group of the transferase in oxidative phosphorylation is discussed. 相似文献
19.
Summary Soluble, oligomycin-insensitive ATPase released from beef heart mitochondria by chloroform extraction can be further purified by Sepharose 6B gel filtration. This purification increases enzyme activity 4–5 times (100–130 U/mg). According to specific activity, high purity and ability to reconstitute oligomycin-sensitive complex, isolated ATPase is quite comparable with enzyme preparations isolated by other methods. 相似文献
20.
A protein has been isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance (EPR) assay based on the relative binding properties of Ca2+, Mn2+, and Mg2+ to the protein. The molecular weight of this protein has been estimated to be about 3000 by urea/sodium dodecyl sulfate-gel electrophoresis and amino acid analysis. The isolated protein has been shown to have high affinity and high specificity for Ca2+ (Jeng, A. Y., Ryan T. E., and Shamoo, A. E. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 2125-2129). However, the protein was found to be contaminated with a large amount of phospholipids. There are 150 mol of phospholipids associated with each mole of the protein. The protein is delipidated using Sephadex LH-20 column chromatography. The contaminating phospholipids can be reduced to 0.1 mol of phospholipids/mol of protein. There are no detectable free fatty acids, hexosamines, or sialic acids associated with the delipidated protein. This protein is named "calciphorin," meaning calcium ionophore protein. 相似文献