首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
We examined the redox effects of UV irradiation on cell wall isolates from Pisum sativum leaves, and polygalacturonic and galacturonic acid, in the presence of hydrogen peroxide. For this purpose, electron paramagnetic resonance spectroscopy and two spin‐traps (DEPMPO and BMPO), capable of differentiating between various free radicals, were applied. Systems were exposed to UV‐B (maximum emission at 312 nm) and UV‐A (352 nm) for 10 min (6 J m–2 s–1). Cell wall isolates exposed to UV in the presence of hydrogen peroxide, produced hydroxyl radical, carbon dioxide radical and superoxide. The production of superoxide was observed for cell wall isolates, polygalacturonic acid (in the presence and in the absence of calcium) and galacturonic acid, and it was diminished upon superoxide dismutase supplementation. The production is at least partially based on the reaction of hydroxyl radicals with (poly)galacturonic acid having carbon dioxide radicals as a products. Acting as a strong reducing agent, carbon dioxide radical reacts with molecular oxygen to produce superoxide. The results presented here shed a new light on: (1) the redox‐modulating role of cell wall; (2) the production of superoxide in the extracellular compartment; (3) the mechanisms involved in translating UV stress into molecular signaling and (4) some other UV‐related phenomena in plants, such as CO2 emission.  相似文献   

2.
Natural forests in South‐East Asia have been extensively converted into other land‐use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large‐scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal) in above‐ and belowground tree biomass in land‐use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above‐ and belowground carbon pools in tree biomass together with NPPtotal in natural old‐growth forests, ‘jungle rubber’ agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land‐use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha?1) was more than two times higher than in jungle rubber stands (147 Mg ha?1) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha?1). NPPtotal was higher in the natural forest (24 Mg ha?1 yr?1) than in the rubber systems (20 and 15 Mg ha?1 yr?1), but was highest in the oil palm system (33 Mg ha?1 yr?1) due to very high fruit production (15–20 Mg ha?1 yr?1). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha?1) but also in carbon sequestration as carbon residence time (i.e. biomass‐C:NPP‐C) was 3–10 times higher in the natural forest than in rubber and oil palm plantations.  相似文献   

3.
Methane production and sulfate reduction in two Appalachian peatlands   总被引:9,自引:7,他引:2  
Anaerobic carbon mineralization was evaluated over a 1-year period in two Sphagnum-dominated peatlands, Big Run Bog, West Virginia, and Buckle's Bog, Maryland. In the top 35 cm of peat, mean rates of methane production, anaerobic carbon dioxide production, and sulfate reduction at Big Run Bog were 63,406 and 146 mol L-1 d-1, respectively, and at Buckle's Bog were 18, 486 and 104 mol L-1 d-1. Annual anaerobic carbon mineralization to methane and carbon dioxide at Big Run Bog and Buckle's Bog was 52.8 and 57.2 mol m-2, respectively. Rates of methane production were similar to rates reported for other freshwater peatlands, but methane production accounted for only 11.7 and 2.8%, respectively, of the total anaerobic carbon mineralization at these two sites. Carbon dioxide production, resulting substantially from sulfate reduction, dominated anaerobic carbon mineralization. Considerable sulfate reduction despite low instantaneous dissolved sulfate concentrations (typically < 300 mol L-1 of substrate) was apparently fueled by oxidation and rapid turnover of the reduced inorganic sulfur pool.The coincidence of high sulfate inputs to the Big Run Bog and Buckle's Bog watersheds through acid precipitation with the unexpected importance of sulfate reduction leads us to suggest a new hypothesis: peatlands not receiving high sulfate loading should exhibit low rates of anaerobic decomposition, and a predominance of methane production over sulfate reduction; however, if such peatlands become subjected to high rates of sulfur deposition, sulfate reduction may be enhanced as an anaerobic mineralization pathway with attendant effects on carbon balance and peat accumulation.  相似文献   

4.
Hydrogen production rates by Anabaena sp. strain TU37-1 obtained after an initial 1-day incubation period were approximately 70 to 80 and 3 to 9 µmol (mg chl)–1 h–1 under argon and nitrogen atmospheres, respectively. Hydrogen production under argon was not enhanced by addition of carbon dioxide, but was enhanced to some extent under nitrogen by increasing the initial carbon dioxide concentration. Rates of hydrogen and oxygen production during the initial 7-hour period were 15 and 220 µmol (mg chl)–1 h–1, respectively, in vessels with 18.5% initial carbon dioxide. Hydrogen production under nitrogen was enhanced by addition of carbon monoxide (1%). The rate obtained from the initial 1-day incubation period was about 40 µmol (mg chl)–1 h–1, which corresponded to about 60% of that under argon. On the basis of these observations, a possible strategy for hydrogen production by nitrogen-fixing cyanobacteria under nitrogen in the presence of carbon monoxide is indicated.  相似文献   

5.
Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha-1. The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha-1yr-1) and rubber production indicated that 40years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol.  相似文献   

6.
Summary The energy flow of the anaerobic metabolism of glodfish at 20°C during hypoxia and anoxia was studied by simultaneous direct and indirect calorimetry. During anoxia the heat production as determined by direct calorimetry (180 J · h–1 · kg–0.85) is reduced to 30% of the normoxic level (570 J · h–1 · kg–0.85), which is the same reduction as found previously. The patterns of substrate utilization are compared with previous results, where the anoxic pattern was established by simultaneous calorimetry without carbon dioxide measurements. The present results, which do include carbon dioxide measurements, show the same pattern: carbohydrate and protein as substrates and carbon dioxide, ethanol and fat as end products. The pattern of substrate utilization at low oxygen levels is a combination of the anoxic pattern with an aerobic component. During anoxia only 5% of the metabolizable energy is used for energy metabolism. Of the remaining part (metabolizable energy for production) 60% is converted into ethanol and 40% into fat. At two hypoxia levels the distribution of the metabolizable energy for production into ethanol and fat is the same.  相似文献   

7.
A method for the measurement of oxygen uptake and carbon dioxide production rates in mammalian cell cultures using membrane mass spectrometry is described. The small stirred reactor with a volume of 15 ml and integrated pH-control permits the economical application of isotopically labelled substrates and 13C-labelled bicarbonate buffer. Repetitive experiments showed the reproducibility of the method. In one case bicarbonate-free HEPES buffer was used and carbon dioxide production was measured using the intensity of the peak at m/z = 44(12CO2). In all other cases H13CO3 -buffer was applied and also12CO2 was measured. The minimum cell density required was only 2 × 104 cells ml−1. In the hybridoma T-flask cultivation studied here the measured specific oxygen uptake and carbon dioxide production rates were reasonably constant during the exponential growth phase and decreased significantly afterwards. Estimated respiratory quotients were always between0.90 and 0.92 except in HEPES-buffer, where a value of 0.67 was found. In the latter case specific oxygen uptake rate was higher than in bicarbonate buffered culture, however, carbon dioxide production rate was lower, and viable cell density was lowest. The addition of phenazine methosulfate, an artificial electron acceptor, increased both rates resulting in highest viable cell density but also highest lactate production rate. Glucose and glutamine pulse-feeding increased final cell density. The method described is directly applicable for samples from batch, fed-batch and continuous cultivations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-14C]acetate was predominantly incorporated into cell material, although some 14CH4 and 14CO2 was produced. Acetate incorporation was reduced by dark incubation in short-term experiments and severely depressed by a 2-day preincubation in darkness. Autoradiograms showed that acetate was incorporated by long filaments resembling phototrophic microorganisms of the mat communities. [3H]acetate was not converted to C3H4 in samples from Octopus Spring collected at the optimum temperature for methanogenesis. NaH14CO3 was readily converted to 14CH4 at temperatures at which methanogenesis was active in both mats. Comparisons of the specific activities of methane and carbon dioxide suggested that of the methane produced, 80 ± 6% in Octopus Spring and 71 ± 21% in Wiegert Channel were derived from carbon dioxide. Addition of acetate to 1 mM did not reduce the relative importance of carbon dioxide as a methane precursor in samples from Octopus Spring. Experiments with pure cultures of Methanobacterium thermoautotrophicum suggested that the measured ratio of specific activities might underestimate the true contribution of carbon dioxide in methanogenesis.  相似文献   

9.
Bioprocess scale‐up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell‐free mixing studies were performed in production scale 5,000‐L bioreactors to evaluate scale‐up issues. Using the current bioreactor configuration, the 5,000‐L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5‐ and 20‐L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000‐L configuration can only support a maximum viable cell density of 7 × 106 cells mL?1. Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000‐L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing‐related engineering parameters in the 5,000‐L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed‐batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000‐L bioreactors may need optimizing to mitigate the risk of different performance upon process scale‐up. Biotechnol. Bioeng. 2009;103: 733–746. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
The direct effect of elevated carbon dioxide on evapotranspiration over a growing season was investigated by scaling up single-leaf gas exchange measurements on soybean and corn plants grown and measured at three carbon dioxide concentrations. Stomatal conductance decreased markedly with increasing carbon dioxide in these species under most conditions. Coupled soil–vegetation–atmosphere models were used to scale up these single-leaf level measurements to simulate evapotranspiration at the regional scale from planting to harvest. The coupled modelling system introduced feedbacks over the season that are not present at the measurement level, which decreased the effect of carbon dioxide on evapotranspiration. Four sets of simulations were performed to evaluate specifically the magnitude of four feedbacks; two resulting from scale, surface layer and mixed layer feedback, one resulting from soil evaporation and one resulting from the interactions of stomatal conductance and the simulated canopy microclimate (physiological feedback). The feedbacks occurring from scale were consistent with previous analytical work indicating that transpiration becomes less dependent on stomatal conductance at larger scales. Evaporation from the soil has been generally neglected in past studies on carbon dioxide effects, but was especially important in decreasing the effects of carbon dioxide on evapotranspiration and showed a seasonal dynamic. The feedback resulting from physiological responses has also received less attention than the feedbacks from scale, but was only moderately important in these simulations. We also investigated the seasonal dynamics of how the observed increase in leaf area at elevated carbon dioxide affects evapotranspiration. Considering all the feedbacks and the observed increase in leaf area at elevated carbon dioxide, the simulated decrease in evapotranspiration was not negligible but was much less than the decrease in stomatal conductance. At the regional scale and maximum complexity in our model, the simulated decrease in seasonal evapotranspiration at doubled carbon dioxide (700 μmol mol–1) was 5.4% for soybeans and 8.6% for corn.  相似文献   

11.
Summary Injection of14C-labeled nutrient onto Mars soil produced an evolution of14C gas in the Viking Labeled Release (LR) experiment. However, a second injection of nutrient seven days later was followed by an abrupt diminution of the amount of radioactive gas in the test cell. Simulation experiments performed in the LR Test Standards Module (TSM) have yielded a plausible explanation for this diminution. Radioactive carbon gases were injected into the TSM test cell in the presence and absence of two Mars analog soils. After equilibration, water was injected and its effect observed. The results indicate that the flight data following second nutrient injection can be explained on a physico-chemical basis involving a carbon dioxide/water/soil equilibrium in the test cell. The results also suggest that the gaseous end product of the Labeled Release reaction on Mars is more likely carbon dioxide than carbon monoxide.  相似文献   

12.
The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5–76.0% and 13.2–19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m3biogas/kgCODi) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO2 was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 ± 0.006 gDM/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%.  相似文献   

13.
Desulfotomaculum nigrificans degraded glucose to acetate, ethyl alcohol, and carbon dioxide. By use of 14C-glucose labeled at different carbon atoms, two pathways of glucose metabolism were detected. They were the Embden-Meyerhof and the Entner-Doudoroff schemes. Because the observed quantities of acetate and carbon dioxide, arising from glucose, were greater than the expected theoretical values, individual fermentations were conducted with 15 uniformly labeled 14C-amino acids. The results indicated that amino acids, supplied by the yeast extract or peptone in the fermentation medium, also contributed to the formation of acetate and carbon dioxide.  相似文献   

14.
15.
After the failure of a three-month pump-and-treat exercise to clean up an aquifer contaminated with the pesticides atrazine and fenamiphos, microcosm experiments using 14C-labeled compounds were undertaken to determine under what conditions bioremediation would be most effective, and to investigate the prospects for the use of bioaugmentation. The calculated half-lives for atrazine and fenamiphos mineralization to carbon dioxide in unamended, anaerobic aquifer material were 730 and 1,000 years, respectively. Oxygenation, coupled with bioaugmentation with enrichments of atrazine-mineralizing bacteria obtained from the contaminated site or an imported, atrazine-mineralizing pure strain, Pseudomonas sp. strain ADP, decreased the half-life of atrazine mineralization, to >20 days. Although strain ADP does not use atrazine as a source of carbon and energy, amendment of the aquifer material with citrate, which strain ADP uses as a source of carbon and energy, did not appreciably stimulate the mineralization rate of atrazine in the microcosms, suggesting that the aquifer contains enough natural organic carbon for atrazine mineralization. Aerobic enrichments of fenamiphos-degrading bacteria were prepared; however, oxygenation and bioaugmentation of aquifer material with these strains did not enhance mineralization of fenamiphos within the time constraints of the experiments. The shortest calculated half-life of fenamiphos mineralization in the microcosms was 6.8 years, which is exceedingly long compared with the half-life of fenamiphos in most surface soils.  相似文献   

16.
A polymer-producing strain of unicellular cyanobacteria, Synechococcus sp., was isolated from a coastal lagoon in Florida. This strain, designated BG0011, excreted a highly viscous polysaccharide. Maximum observed growth rates for BG0011 were 2.5 div. day-2. BG0011 also exhibited nitrogen fixation (nitrogenase) activity under aerobic conditions and grew at near maximum rates in medium lacking reduced nitrogen. Growth and carbohydrate production were enhanced by carbon dioxide enrichment. Rheological study of the extracellular polysaccharide revealed a viscosity versus shear rate curve similar in shape to that of xanthan gum. Maximum observed rate of carbohydrate production was 1 g dry weight liter-1 month-1.  相似文献   

17.
Glycine was decarboxylated only by intact mitochondria to yield carbon dioxide, formaldehyde, and ammonia, probably present as pyridoxamine phosphate. The formaldehyde could become incorporated into serine, via N5N10 methylene-FH4, and a requirement was demonstrated for pyridoxal phosphate. Similarly, glyoxylate with pyridoxamine phosphate was also decarboxylated to formaldehyde and carbon dioxide. Glyoxylate could be decarboxylated by at least two additional pathways. One consisted of oxidative decarboxylation yielding formate and carbon dioxide, and requiring thiamine pyrophosphate, manganese ions, and oxygen. The other consisted of glyoxylate condensation with 2-oxoglutarate, yielding carbon dioxide and an intermediate which, upon decarboxylation, appeared to be hydroxylevulinic acid.  相似文献   

18.
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The performance of a full-scale (500 m3) sulfidogenic synthesis gas fed gas-lift reactor treating metal- and sulfate-rich wastewater was investigated over a period of 128 weeks. After startup, the reactor had a high methanogenic activity of 46 Nm3·h−1. Lowering the carbon dioxide feed rate during the first 6 weeks gradually lowered the methane production rate. Between weeks 8 and 93, less than 1% of the hydrogen supplied was used for methanogenesis. Denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified 16S rRNA gene fragments showed that the archaeal community decreased in diversity but did not disappear completely. After the carbon dioxide feed rate increased in week 88, the methane production rate also increased, confirming that methane production was carbon dioxide limited. Even though lowering the carbon dioxide feed appeared to affect part of the sulfate-reducing community, it did not prevent achieving the desired rates of sulfate reduction. The average sulfate conversion rate was 181 kg∙h−1 for the first 92 weeks. After 92 weeks, the sulfate input rate was increased and from week 94 to 128, the average weekly sulfate conversion rate was 295 kg·h−1 (SD ± 87). Even higher sulfate conversion rates of up to 400 kg·h−1 could be sustained for weeks 120–128. The long-term performance and stability together with the ability to control methanogenesis demonstrates that synthesis gas fed reactor can be used successfully at full scale to treat metal and sulfate-rich wastewater.  相似文献   

20.
A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号