首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobbs G 《Genetics》1986,113(2):355-365
A laboratory strain of Drosophila pseudoobscura (L116) is studied that, when crossed to sex-ratio homozygous females, produces sons that exhibit varying levels of the male sex-ratio (msr) phenotype. The msr phenotype occurs only in sex-ratio males and is due to the production of a high frequency of nullo-XY sperm. The level of the msr phenotype is variable, and new variability is generated in one father-son transmission. Pedigree studies indicate the genes for msr reside on the Y chromosome or the autosomes of the L116 stock.  相似文献   

2.
G. Cobbs  L. Jewell    L. Gordon 《Genetics》1991,127(2):381-390
Males with the SR X chromosome show the "sex-ratio" (sr) phenotype in which they produce almost entirely daughters. The few sons (about 1%) are invariably sterile X/O males and result entirely from nullo-XY sperm. The "male-sex-ratio" (msr) phenotype is a modified form of sr in which SR/Y males produce a higher frequency of sterile X/O sons. The msr trait is due to the presence of the SR X-chromosome in males which are also homozygous for one or more autosomes from the L116 strain. Here the frequency of nullo-3 and diplo-3 sperm from msr males was measured by crossing to a compound-3 strain and found to be 13.8% and 3.2%, respectively, of the total viable sperm. The sr males produced very low levels of nullo-3 sperm at a frequency not different from control X/Y males and a slightly elevated frequency of diplo-3 sperm over X/Y males. The msr males were found to have only 12% the fecundity of sr males and in matings to cause a high frequency of brown inviable eggs. These results indicate that high rates of autosomal aneuploidy are not restricted to chromosome 3 but also occur for chromosomes 2, 4 and 5. The overall frequency of autosomal aneuploid sperm is estimated to be approximately 50%. Microscopic studies of meiosis in testes from msr males indicates meiotic nondisjunction and meiotic chromosome loss are responsible for the msr phenotype. Last, microscopic studies of sperm cysts from msr males reveal high levels of spermiogenic failure.  相似文献   

3.
Frequencies of sex chromosome aneuploid sperm were measured for standard and "sex-ratio" Drosophila pseudoobscura males with identical genetic backgrounds. The "sex-ratio" males produced a 15.6-fold higher frequency of nullo-XY sperm than the standard males produced, but diplo-XY sperm were produced at the same rate in the two types of males. "Sex-ratio" males with the same SR chromosome but with different chromosome backgrounds were found to produce different frequencies of sterile sons. These results indicate that strains of D. pseudoobscura differ at autosomal or Y-linked modifiers of sr. Such modifiers are similar to the msr genes found in the L116 strain of this species.  相似文献   

4.
Baldev K. Vig 《Genetics》1982,102(4):795-806
The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres.  相似文献   

5.
The nucleolus organizers on the X and Y chromosomes of Drosophila melanogaster are the sites of 200-250 tandemly repeated genes for ribosomal RNA. As there is no meiotic crossing over in male Drosophila, the X and Y chromosomal rDNA arrays should be evolutionarily independent, and therefore divergent. The rRNAs produced by X and Y are, however, very similar, if not identical. Molecular, genetic and cytological analyses of a series of X chromosome rDNA deletions (bb alleles) showed that they arose by unequal exchange through the nucleolus organizers of the X and Y chromosomes. Three separate exchange events generated compound X·Y L chromosomes carrying mainly Y-specific rDNA. This led to the hypothesis that X-Y exchange is responsible for the coevolution of X and Y chromosomal rDNA. We have tested and confirmed several of the predictions of this hypothesis: First, X· YL chromosomes must be found in wild populations. We have found such a chromosome. Second, the X·YL chromosome must lose the YL arm, and/or be at a selective disadvantage to normal X+ chromosomes, to retain the normal morphology of the X chromosome. Six of seventeen sublines founded from homozygous X·YLbb stocks have become fixed for chromosomes with spontaneous loss of part or all of the appended YL. Third, rDNA variants on the X chromosome are expected to be clustered within the X+ nucleolus organizer, recently donated (" Y") forms being proximal, and X-specific forms distal. We present evidence for clustering of rRNA genes containing Type 1 insertions. Consequently, X-Y exchange is probably responsible for the coevolution of X and Y rDNA arrays.  相似文献   

6.
W. Kunz 《Genetics》1976,82(1):25-34
The number of rRNA cistrons is measured by filter saturation hybridization in different stocks of D. hydei, where the wild-type X chromosome has one nucleolus organizer (NO) and the wild-type Y has two separated NO's. (see PDF) females having no X chromosomal NO show an rDNA content exceeding that of a Y chromosome. An even greater increase in the rRNA cistron number is measured in two translocation stocks where the (see PDF) is combined with one half of a Y and, therefore, each stock contains only one of the two Y chromosomal NO's. But when the same Y fragments are brought together with a wild-type X chromosome they lose about one-half of their rRNA cistrons within one generation. Males with two complementary Y fragments but having no X chromosomal NO show a considerably higher rDNA content than the (see PDF) females, although both are equal in respect of their NO number. Consideration is given to related phenomena in Drosophila melanogaster.  相似文献   

7.
In a single male specimen of Myrmeleon mexicanum Banks the sex chromosomes, normally X and Y, were replaced by what appeared to be X1X2 and Y. These segregated as expected on that interpretation in only half of the spermatocytes — in the other half, one X and the Y segregated from the other X. This atypical segregation is explicable on the assumption that one of the supposed Xs is a supernumerary, not a sex chromosome, and the diploid complement of the male comprises six pairs of autosomes plus a supernumerary and the X and Y sex chromosomes. The orientation of the X chromosomes at first metaphase was variable: kinetochoric activity may be localized midway the length of the chromosome, as in gonial mitosis, or terminally. Comparative study of three congeneric species, seven of Brachynemurus, one of Psammoleon, and one of Vella showed normal segregation in all, and no evidence for secondary kinetochoric activity. In nine of the species studied one pair of autosomes was unconjoined at first metaphase in 0.3%–1.2% of primary spermatocytes. These autosomes segregated precociously with the sex chromosomes in the central unit of the spindle. In one exceptional male of Brachynemurus hubbardi Currie all first meiotic metaphases showed this behavior, and a compound X1X2/Y1Y2 system was thus simulated. Bivalent formation replaced distance segregation of sex chromosomes in 0.4%–3.2% of the spermatocytes in seven of the thirteen species studied. These sex-bivalents frequently displayed partial or complete failure in congression.  相似文献   

8.
Wu CI  Beckenbach AT 《Genetics》1983,105(1):71-86
This study deals with sex-ratio genes tightly linked within the Sex-Ratio inversion. By taking advantage of the fact that the Sex-Ratio chromosome of Drosophila persimilis [SR(B)] is homosequential to the Standard chromosome of D. pseudoobscura [ST(A)], we carried out two reciprocal introgression experiments. Individual segments of SR(B) or ST(A) were introgressed into the genome of D. pseudoobscura or D. persimilis, respectively. Males possessing a hybrid SR(B)-ST(A) X chromosome and a genetic background derived from either of the two species were tested for fertility and sex-ratio expression.—It was found that, in terms of the meiotic drive genes, the Sex-Ratio chromosome differs extensively from the Standard chromosome. Because recombinations of these genes result in a complete loss of sex-ratio expression, this finding lends strong support to the hypothesis of gene coadaptation. Coadaptation, in this context, is the advantage of being transmitted preferentially. In light of this finding, the evolution of the sex-ratio system in these two sibling species is discussed.—Introgression experiments also yielded information about hybrid sterility. With reciprocal introgression, sterility interactions were found to be "asymmetric." The asymmetry is fully expected from the viewpoint of evolution of postmating reproductive isolation.  相似文献   

9.
Mammals produce sperm or oocytes depending on their sex; however, newborn MRL/MpJ (MRL) male mice produce oocytes within their testes. We previously reported that one of the genes responsible for this phenotype is present on the MRL-type Y chromosome (YMRL), and that multiple genes, probably autosomal, are also required for the development of this phenotype. In this study we focused on the autosomal genes and examined their relationship with this phenotype by analyzing the progeny from crosses between MRL mice and other strains. We first observed the male F1 progeny from the crosses between female A/J, C57BL/6 (B6), BALB/c, C3H/He, or DBA/2 mice and male MRL mice, and two consomic strains, male B6-YMRL and MRL-YB6. Testicular oocytes that were morphologically similar to those of MRL mice were detected in all mouse strains except BALBMRLF1; however, the incidence of testicular oocytes was significantly lower than that in MRL mice. The appearance of testicular oocytes in MRL-YB6 mice indicates that this phenotype is strongly affected by genomic factors present on autosomes, and that there is at least one other causative gene on the MRL-type autosomes (MRL testicular oocyte production, mtop) other than that on YMRL. Furthermore, a quantitative trait locus (QTL) analysis using N2 backcross progeny from crosses between female MRLB6F1 and male MRL mice revealed the presence of susceptibility loci for the appearance of testicular oocytes at 8?C17?cM on Chr 15. These findings demonstrate that the appearance of testicular oocytes is regulated by the genetic factors on Chr 15 and on YMRL.  相似文献   

10.
Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.MANY eukaryotes of biomedical and agricultural importance—including humans, other mammals, birds, and Drosophila—are heterogametic. Their sex chromosomes differ drastically in size and genetic composition. In species with X and Y chromosomes, males carry only one copy of each X-linked gene. This poses a serious challenge for experimental geneticists, because males inheriting a mutation in a vital X-linked gene die before they can be used in genetic crosses. In fact, the hemizygosity of X-linked genes in males has been a significant barrier to the functional analysis of many X-linked genes and is largely responsible for the poor genetic characterization of X chromosomes relative to autosomes in most organisms.The lethality of X-linked mutations can be rescued by providing a wild-type copy of the mutated gene elsewhere in the genome. This can be accomplished with a transgenic construct if the molecular identity of the mutated gene is known. In many cases, however, the mutated gene has not been identified and it is necessary to provide wild-type function with a multigene interchromosomal duplication, i.e., a segment of the X inserted in another chromosome. If the proximal and distal extents of the duplicated segment are known, phenotypic rescue maps the mutated gene to the defined X chromosome region.Multigene deletions can also be used to map X-linked mutations by complementation, but crosses between individuals carrying deletions and X-linked lethal mutations are impossible without rescuing the lethality of either the deletion or the lethal mutation in males. Projects at the Bloomington Drosophila Stock Center and elsewhere (Parks et al. 2004; Ryder et al. 2007) have generated large collections of deletions with molecularly defined breakpoints in Drosophila melanogaster, but the utility of the X deletions is limited without duplications of the corresponding chromosomal regions.Duplications are potentially important for gene discovery. Identifying sets of genes involved in the same cellular process is a major focus of functional genomics research and this can be accomplished genetically by identifying dosage-sensitive modifiers of mutant phenotypes. Often, increasing or decreasing the copy number of a gene will enhance or suppress the phenotype associated with mutating another gene involved in the same process. Screening collections of deletions is a popular way to identify interacting genes in Drosophila (for examples, see Seher et al. 2007; Zhao et al. 2008; Aerts et al. 2009; Salzer et al. 2010) and was a major impetus for the assembly of the Bloomington Stock Center “Deficiency Kit,” which provides maximal coverage of the genome with the fewest deletions. Though dosage-sensitive modifiers could also be identified using increased gene dosage, the use of duplications in enhancer and suppressor screens remains largely unexplored. Assembling sets of duplications providing efficient genomic coverage would likely popularize this experimental approach.The size of duplicated segments determines how duplication chromosomes are used experimentally. Small duplicated segments allow high resolution gene mapping, but they are not suitable for other purposes. Only large duplicated segments are capable of rescuing the lethality of sizable multigene X deletions. Likewise, large duplicated segments provide efficiency in initially localizing mutations and identifying dosage-dependent modifiers. Despite their usefulness, interchromosomal duplications of large segments are among the hardest chromosomal rearrangements to isolate. In Drosophila, many existing duplications were recovered fortuitously as three-breakpoint aberrations following irradiation, but such rearrangements are rare and difficult to identify in screens. Other duplications were methodically constructed from preexisting rearranged chromosomes. This approach works well when it is possible, but it can be used only when progenitor aberrations with appropriate breakpoints are available. Because of these difficulties, the selection of duplication strains generated by Drosophila workers over the past several decades is not satisfactory for many purposes. The duplications are often difficult to use experimentally, their breakpoints are sparsely distributed along the X chromosome and only roughly mapped, and substantial gaps in coverage exist. Obviously, improved duplication resources are needed.Here we present the methodology and progress of a project at the Bloomington Drosophila Stock Center to construct interchromosomal duplications of large, megabase-scale X segments. Our approach builds on the long history of manipulating Drosophila chromosomes in vivo (Novitski and Childress 1976; Ashburner et al. 2005), but we have eliminated the need for preexisting aberrations by generating progenitor chromosomes using the FLP-FRT system. Indeed, this site-specific recombination system has had an enormous impact on the ability of fly geneticists to engineer many kinds of novel chromosomes (Golic and Golic 1996; Parks et al. 2004; Ryder et al. 2007). We will demonstrate how we have combined FLP-mediated recombination and other chromosome manipulation techniques to produce Y-linked duplications of large X segments. As we will show, appending X segments to Y chromosomes rather than autosomes has advantages both for the synthesis and experimental use of X duplications.To date, we have generated a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. We anticipate completion of the project within the coming year. Using these duplications, mutations and genetic modifiers can be mapped first to large X intervals using a tiling set of the largest duplicated segments and then to small chromosome intervals using subsets of the duplications. These duplications will also facilitate deletion mapping. The creation of a set of stocks providing complete duplication coverage and extensive breakpoint subdivision of the X chromosome in a consistent genetic background will remove an impediment to investigating the functions of X-linked genes that has frustrated generations of Drosophila geneticists.  相似文献   

11.
Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X1X1X2X2/X1X2Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n?=?36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.  相似文献   

12.
Males carrying a large deficiency in the long arm of the Y chromosome known to delete the fertility gene kl-2 are sterile and exhibit a complex phenotype: (1) First metaphase chromosomes are irregular in outline and appear sticky; (2) spermatids contain micronuclei; (3) the nebenkerns of the spermatids are nonuniform in size; (4) a high molecular weight protein ordinarily present in sperm is absent; and (5) crystals appear in the nucleus and cytoplasm of spermatocytes and spermatids. In such males that carry Ste+ on their X chromosome the crystals appear long and needle shaped; in Ste males the needles are much shorter and assemble into star-shaped aggregates. The large deficiency may be subdivided into two shorter component deficiencies. The more distal is male sterile and lacks the high molecular weight polypeptide; the more proximal is responsible for the remainder of the phenotype. Ste males carrying the more proximal component deficiency are sterile, but Ste + males are fertile. Genetic studies of chromosome segregation in such males reveal that (1) both the sex chromosomes and the large autosomes undergo nondisjunction, (2) the fourth chromosomes disjoin regularly, (3) sex chromosome nondisjunction is more frequent in cells in which the second or third chromosomes nondisjoin than in cells in which autosomal disjunction is regular, (4) in doubly exceptional cells, the sex chromosomes tend to segregate to the opposite pole from the autosomes and (5) there is meiotic drive; i.e., reciprocal meiotic products are not recovered with equal frequencies, complements with fewer chromosomes being recovered more frequently than those with more chromosomes. The proximal component deficiency can itself be further subdivided into two smaller component deficiencies, both of which have nearly normal spermatogenic phenotypes as observed in the light microscope. Meiosis in Ste + males carrying either of these small Y deficiencies is normal; Ste males, however, exhibit low levels of sex chromosome nondisjunction with either deficient Y. The meiotic phenotype is apparently sensitive to the amount of Y chromosome missing and to the Ste constitution of the X chromosome.  相似文献   

13.
Henikoff S 《Genetics》1979,93(1):105-115
A dominant eye color mutation was found associated with a third chromosome inversion broken distally at or near the karmoisin (kar) locus in 87C and proximally within centric heterochromatin. Suppressibility of the mutant phenotype by an extra Y chromosome indicated that this was an example of dominant position-effect variegation. When heterozygous with deficiencies uncovering the kar locus, this inversion chromosome was found to be lethal unless a region in 87EF was also deleted. Extra Y chromosomes rescued inversion/deletion heterozygotes, while removal of the Y chromosome from heterozygous males deficient for the region in 87EF was lethal. Thus, a variegating lethal lies near the breakpoint in 87C, and a wild-type gene that enhances its variegation lies in 87EF. Furthermore, deletion of the region in 87EF was found to strongly suppress white-mottled-4 (wm4) variegation, while deletion of another region in 87BC suppressed less strongly. These results indicate that essential genes on autosomes are sensitive to position effects, and loci that enhance variegation, as defined by deficiency mapping, are very common.  相似文献   

14.
15.
M-T. Yamamoto 《Genetica》1993,87(3):151-158
Interspecific crosses between D. melanogaster and D. simulans or its sibling species result in unisexual inviability of the hybrids. Mostly, crosses of D. melanogaster females X D. simulans males produce hybrid females. On the other hand, only hybrid males are viable in the reciprocal crosses. A classical question is the cause of the unisexual hybrid inviability on the chromosomal level. Is it due to the absence of a D. simulans X chromosome or is it due to the presence of a D. simulans Y chromosome? A lack of adequate chromosomal rearrangements available in D. simulans has made it difficult to answer this question. However, it has been assumed that the lethality results from the absence of the D. simulans X rather than the presence of the D. simulans Y. Recently I synthesized the first D. simulans compound-XY chromosome that consists of almost the entire X and Y chromosomes. Males carrying the compound-XY and no free Y chromosome are fertile. By utilizing the compound-XY chromosome, the viability of hybrids with various constitutions of cytoplasm and sex chromosomes has been examined. The results consistently demonstrate that the absence of a D. simulans X chromosome in hybrid genome, and not the presence of the Y chromosome, is a determinant of the hybrid inviability.  相似文献   

16.
Crosses between Drosophila mojavensis and D. arizonensis produce fertile females, but the males from the cross ♂ D. mojavensis × ♀ D. arizonensis are sterile. The chromosomal basis of sperm immotility was studied in these hybrids. Interspecific crossing-over was avoided by crossing hybrid males to pure-species females, and chromosomal identification in backcross progeny was possible by means of electrophoretic markers. The main findings are as follows. The Y-chromosome and two autosomes are involved in the determination of sperm motility. The other autosomes, with the exception of the sixth which was not tested, appear to have no effect. The effect of the D. arizonensis X-chromosome was not examined, but it is established that the D. mojavensis X-chromosome has no effect on sperm motility in males carrying the D. arizonensis Y-chromosome and any combination of autosomes. The Y-chromosome and the two autosomes interact with each other in a simple and predictable way, so that certain combinations of these chromosomes always produce motile sperm and others immotile sperm. Thus, asymmetrical male hybrid sterility may have a simple genetic basis. In contrast to ethological isolation, the genetic basis for this postmating isolating mechanism does not appear to vary among conspecific populations, an observation which suggests that postmating isolation antedates ethological isolation in these species.  相似文献   

17.
Genomes from a group of Drosophila melanogaster collected from a natural population at San Benito, South Texas, in March of 1975 were analyzed for the presence of male-recombination elements. All three autosomes and both sex chromosomes were examined, with emphasis placed on the two major autosomes, the second and third chromosomes. In samples of 16 second and 16 third chromosomes, at least half, but not all, of each were found to carry male-recombination elements. It is suggested, although the data are not conclusive, that some of the fourth, X, and Y chromosomes might also be associated with male-recombination elements.—When a male-recombination element, or elements, was located in the second chromosome, relatively more male recombination was induced in the second than in the third chromosome. This situation was reversed when the element(s) was located in the third chromosome.—Distortion of transmission frequency, one of the characteristics of previously studied second chromosome lines associated with male recombination, was confirmed for these second chromosomes that carried male-recombination elements. Similar, but less pronounced, distortion was observed for the third chromosome lines that carried male-recombination elements.  相似文献   

18.
BackgroundAlthough the mammalian X and Y chromosomes evolved from a single pair of autosomes, they are highly differentiated: the Y chromosome is dramatically smaller than the X and has lost most of its genes. The surviving genes are a specialized set with extraordinary evolutionary longevity. Most mammalian lineages have experienced delayed, or relatively recent, loss of at least one conserved Y-linked gene. An extreme example of this phenomenon is in the Japanese spiny rat, where the Y chromosome has disappeared altogether. In this species, many Y-linked genes were rescued by transposition to new genomic locations, but until our work presented here, this has been considered an isolated case.ResultsWe describe eight cases of genes that have relocated to autosomes in mammalian lineages where the corresponding Y-linked gene has been lost. These gene transpositions originated from either the X or Y chromosomes, and are observed in diverse mammalian lineages: occurring at least once in marsupials, apes, and cattle, and at least twice in rodents and marmoset. For two genes - EIF1AX/Y and RPS4X/Y - transposition to autosomes occurred independently in three distinct lineages.ConclusionsRescue of Y-linked gene loss through transposition to autosomes has previously been reported for a single isolated rodent species. However, our findings indicate that this compensatory mechanism is widespread among mammalian species. Thus, Y-linked gene loss emerges as an additional driver of gene transposition from the sex chromosomes, a phenomenon thought to be driven primarily by meiotic sex chromosome inactivation.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0667-4) contains supplementary material, which is available to authorized users.  相似文献   

19.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

20.
Jun-ichi Suto 《Mammalian genome》2011,22(11-12):648-660
In the present study, dissection of genetic bases of testis weight in mice was performed. Autosomes and the X chromosome were searched using traditional quantitative trait locus (QTL) scans, and the Y chromosome was searched by association studies of Y-consomic strains. QTL analysis was performed in ??DDD?×???CBA F2 mice; the inbred mouse DDD has the heaviest testes, whereas the inbred mouse CBA has the lightest testes. Two significant testis weight QTLs were identified on chromosomes 1 and X. A DDD allele was associated with increased and decreased testis weight at the locus on chromosomes 1 and X, respectively. In the reciprocal cross ??CBA?×???DDD F2 mice, QTL on chromosome 1, and not on chromosome X, had a significant effect on testis weight. The DDD allele at the X-linked locus could not sustain testis weight in combination with the Y chromosome of the CBA strain. The Y chromosome per se had a significant effect on testis weight, i.e., DH-Chr YDDD had significantly heavier testes than DH-Chr YCBA. On the basis of the results of Y-chromosome-wide association studies using 17 Y-consomic strains, variations in Uty, Usp9y, and Sry were significantly associated with testis weight. Thus, testis weight is a complex quantitative phenotype controlled by multiple genes on autosomes and sex chromosomes and their interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号