首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Creatine phosphokinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) is the major constituent of the "low-salt-soluble" proteins of the electric organ from Torpedo marmorata. The denatured subunits of the enzyme have an apparent Mr of 43 000 and isoelectric points ranging between pH 6.2 and pH 6.5. Identical properties are found for the creatine phosphokinase from Torpedo muscle tissue. Anti-(electric organ creatine phosphokinase) antibodies are specific for the muscle-type enzyme and do not cross-react with enzymes present in Torpedo brain and electric lobe tissue. Biochemical and immunochemical properties of the enzyme associated with acetylcholine-receptor-enriched membranes show that this enzyme is as the "low-salt-soluble" electric organ enzyme of the muscle-specific type. In vitro translation of electric organ poly(A)-rich mRNA in a reticulocyte lysate reveals the abundance of mRNA specific for muscle creatine phosphokinase. During embryonic development of the electrocyte a continuous increase of translatable amounts of this mRNA is observed. No brain-type polypeptides are synthesized. The subunits of the brain-specific enzyme differ in molecular mass (Mr approximately equal to 42000) and isoelectric properties (pI approximately equal to 7.0-7.2). The unexpected finding that the brain forms are more basic than the muscle-specific enzyme is supported by agarose and cellulose acetate electrophoresis and ion-exchange chromatography properties.  相似文献   

2.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

3.
Abstract— Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine in nervous tissue, has been purified to apparent homogeneity from the electric organ of the electric fish Torpedo californica using ion-exchange, gel filtration, and hydroxyapatite chromatography. The final preparation had been purified 8570-fold to a specific activity of 30μmol ACh formed/min/mg protein. The purified protein has a pH optimum of 6.8 (phosphate buffer), is activated by low concentrations (ca. 10 m m ) of ammonium or alkylammonium ions, and is strongly inhibited by a sulfhydryl blocking reagent (DTNB). ChAT has a mol. wt. of 63000 when measured by SDS-polyacrylamide gel electrophoresis or gel filtration.
A new method for the rapid assay of ChAT activity is described in which unreacted substrate ([3H]acetyl-CoA) is removed from reaction mixtures by adsorption to charcoal: some advantages of this technique are discussed.  相似文献   

4.
Although beta-D-fucosidase (beta-D-fucoside fucohydrolase, EC 3.2.1.38) has been isolated from various sources, the identity of this enzyme is still not settled. We have purified a specific beta-D-fucosidase in electrophoretically homogeneous form crude extracts of Aspergillus phoenicis by polyethyleneglycol 6000-phosphate buffer aqueous two-phase separation, and successive chromatography on DEAE-Sephadex A-50, hydroxyapatite and Sephadex G-100 columns. The molecular weight of the enzyme was estimated to be 57000 by SDS-polyacrylamide gel electrophoresis and 50000 to 60000 by gel filtration on Sephadex G-100. The enzyme showed optimum coside were 2.4mmol/L, and 1.28 mumol min-1 the pH range 5.5-6.5 and below 35 degrees C. The Km and the Vmax values for pNP-beta-D-fucoside were 2.4mmol/L, and 1.28 mumol.min-1.mg-1 respectively. The enzyme was strongly inhibited by sulfhydryl group reagents, PCMB-NEM and iodoacetate. It was also inhibited by EDC, DEP and NBS. Thus, -SH, -COOH groups, histidyl and tryptophyl residues were essential for enzyme activity. The purified beta-D-fucosidase showed high specificity toward p-nitrophenyl beta-D-fucoside. The enzyme was inhibited by D-fucose and D-fucono-gamma-lactone, but not by D-galactose, D-galactono-gamma-lactone, D-glucose or D-glucono-gamma-lactone; the latter compounds are specific inhibitors of beta-D-galactosidase and beta-D-glucosidase respectively. Thus, this enzyme is the most strictly specific beta-D-fucosidase when compared with those previously reported.  相似文献   

5.
An enzyme catalyzing thiol-disulfide exchange, thioltransferase, was purified to homogeneity from pig liver. By taking advantage of the relatively large pI shift of the enzyme between its reduced and disulfide forms, the purification procedure, which included a heat step, ammonium sulfate precipitation, Sephadex G-75 and G-50 gel chromatography, and two CM-Sepharose chromatography separations, resulted in a 32% overall yield. The purified enzyme was demonstrated to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, and high-performance liquid chromatography. The protein had a Mr of approximately 11,000 and, in the reduced form, a pI of 6.4. The amino acid composition of the enzyme was similar to that of rat liver thioltransferase and calf thymus glutaredoxin and the N-terminus of the protein was blocked. The optimal pH for the enzyme activity was 9.0. The plots of thioltransferase activity as a function of S-sulfocysteine, 2-hydroxyethyl disulfide, and reduced glutathione concentrations did not display Michaelis-Menten kinetics. The enzyme was very sensitive to a sulfhydryl alkylating reagent. Preincubation of the enzyme with its disulfide substrates prevented the inactivation of the enzyme by iodoacetic acid while the other substrate, GSH, did not provide such protection. The results suggest that the active center of thioltransferase is cysteine dependent.  相似文献   

6.
Heparinase I has been purified from F. heparinum by a novel scheme with 10mM CaCl(2) added in crude extracts of cells. The enzyme was purified to apparent homogeneity through ammonium sulfate precipitation, Octyl-Sepharose chromatography, CM-52 chromatography, SP-650 chromatography, and Sephadex G-100 gel filtration chromatography. The specific activity of the purified enzyme was 90.33 U/mg protein with a purification fold of 185.1. The yield was 17.8%, which is higher than any previous scheme achieved. The molecular weight of the purified enzyme was 43 kDa with a pI of 8.5. It has an activity maximum at pH range of 6.4-7.0 and 41 degrees C. CaCl(2) is a good stabilizer of the purified enzyme in liquid form toward either storaging at 4 degrees C or freezing-thawing.  相似文献   

7.
Starch phosphorylase from tapioca leaves has been purified to homogeneity, using the technique of ammonium sulfate fractionation, heat treatment, DEAE-cellulose chromatography, filtration through Sephadex G-100 and Sephadex G-200, and DEAE-Sephadex chromatography. The enzyme has a molecular weight of 450,000, as determined by gel filtration through Sephadex G-200 and contains 22 sulfhydryl groups per mole of the enzyme protein. Several types of evidence indicate the absence of pyridoxal 5′-phosphate as a prosthetic group of the enzyme. The kinetic data show a sequential type of the reaction mechanism. The enzyme activity is inhibited by tyrosine (Ki = 2.15 mm).  相似文献   

8.
Choline acetyltransferase (EC 2.3.1.6) catalyzes the synthesis of the neurotransmitter acetylcholine from acetylcoenzyme A and choline. It has been purified from the electric organ of Torpedo marmorata by a new double-affinity chromatography. Our rapid and specific purification procedure includes affinity chromatography on CoA-Sepharose and then a second affinity chromatography on the enzyme's inhibitor [2-[3-(2-ammonioethoxy)-benzoyl]ethyl]trimethylammonium bromide coupled to Sepharose via a six-carbon spacer arm. The final enzyme preparation has been purified 7300-fold to a specific activity of 73 mumol acetylcholine formed min-1 mg protein-1. The isolated enzyme gave a single band on disc polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The relative molecular mass was determined to be 68,300 +/- 2100.  相似文献   

9.
Staphylococcal L-asparaginase has been purified 400-fold with 40% recovery. The procedure involves ammonium sulphate precipitation and a column chromatography on Sephadex G-200 gel filtration). The enzyme is composed of not identical subunits. protein (pI 4.4) with the approximate molecular weight of 125,000 (estimated by Sephadex G-200 gel filtration). The enzyme is composed of not identical subunits. The polyacrylamide-SDS gel electrophoresis indicated two subunits with molecular weight 18,000 and 22,000.  相似文献   

10.
Formation of acetyl-CoA through acetyl-CoA synthetase (forward reaction) and through choline acyltransferase (backward reaction) was investigated in tissue extract from the electric organ of Torpedo marmorata. When the tissue extract was submitted to gel filtration on Sephadex G-25, the formation of acetyl-CoA by acetyl-CoA synthetase appeared fully dependent on ATP and CoA and partially dependent on acetate (an endogenous supply of acetate is discussed). Choline acetyltransferase was a potent source of acetyl-CoA, only requiring acetylcholine and CoA, and was much more efficient than acetyl-CoA synthetase for concentrations of acetylcholine likely to be present in nerve endings.  相似文献   

11.
Although beta-D-fucosidase (beta-D-fucohydrolase, EC 3.2.1.38) has been isolated from various sources, all those enzymes were associated with a high activity of beta-D-galactosidase and/or beta-D-glucosidase. We have purified a specific beta-D-fucosidase in electrophoretically homogeneous form from crude extracts of Aspergillus phoenicis by polyethyleneglycol 8000-phosphate buffer aqueous two-phase separation, and successive chromatography on DEAE-Sephadex A-50, hydroxyapatite, and Sephadex G-100 columns. The molecular weight of the enzyme was estimated to be 57,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 50,000 to 60,000 by gel filtration on Sephadex G-100. The enzyme showed optimum activity at pH 6.0 and 40 degrees C; it was stable in the pH range 5.5-6.5 and below 35 degrees C. The Km and the Vmax values for pNP-beta -D-fucoside were 2.4 mM, and 12.8 mumol.min-1.mg-1, respectively. The enzyme was strongly inhibited by sulfhydryl group reagents, p-chloromercuribenzoate, n-ethylmaleimide, and iodoacetate. It was also inhibited by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, diethyl pyrocarbonate, and N-bromosuccinimide. Thus, -SH and -COOH groups and histidyl and tryptophyl residues were essential for enzyme activity. The purified beta-D-fucosidase showed high specificity toward p-nitrophenyl-beta-D-fucoside. The enzyme was inhibited by D-fucose and D-fucono-gamma-lactone, but not by D-galactose, D-galactono-gamma-lactone, D-glucose, or D-glucono-gamma-lactone; the latter compounds are specific inhibitors of beta-D-galactosidase and beta-D-glucosidase, respectively. Thus, this enzyme is the most strictly specific beta-D-fucosidase when compared with those previously reported.  相似文献   

12.
R Roskoski  C T Lim  L M Roskoski 《Biochemistry》1975,14(23):5105-5110
Choline acetyltransferase (EC 2.3.1.6) catalyzes the biosynthesis of acetylcholine according to the following chemical equation: acetyl-CoA + choline in equilibrium to acetylcholine + CoA. In addition to nervous tissue, primate placenta is the only other animal source which contains appreciable acetylcholine and its biosynthetic enzyme. Human brain caudate nucleus and human placental choline acetyltransferase were purified to electrophoretic homogeneity using ion-exchange and blue dextran-Sepharose affinity chromatography. The molecular weights determined by Sephadex G-150 gel filtration and sodium dodecyl sulfate gel electrophoresis are 67000 plus or minus 3000. N-Ethylmaleimide, p-chloromercuribenzoate, and dithiobis(2-nitrobenzoic acid) inhibit the enzyme. Dithiothreitol reverses the inhibition produced by the latter two reagents. The pKa of the group associated with N-ethylmaleimide inhibition is 8.6 plus or minus 0.3. A chemically competent acetyl-thioenzyme is isolable by Sephadex gel filtration. The enzymes from the brain and placenta are thus far physically and biochemically indistinguishable.  相似文献   

13.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37,000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 mumol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100. The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29,000 D and 26,000 D to give a native molecular weight of 55,000 D. The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. 1-chloro-2,4-dinitrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse. Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

14.
Carbonic anhydrase (CA) from erythrocytes of the pink salmon, Onchorhyncus gorbushka, was purified using chloroform-ethanol extraction and Sephadex G-75 gel filtration. A single, high specific-activity CA isozyme having a molecular weight of 29,000 was found. The enzyme sedimented as a single boundary at a sedimentation velocity of 2.9S. Amino acid analysis revealed a composition similar to other submammalian CAs with the exception that the cysteine content was low (1 mol cysteine/mol enzyme). Like other submammalian CAs, the presence of a sulfhydryl reducing agent was required to maintain full activity and to prevent structural changes in the enzyme.  相似文献   

15.
Farnesyl pyrophosphate synthetase from Bacillus subtilis   总被引:3,自引:0,他引:3  
Farnesyl pyrophosphate synthetase was detected in extracts of Bacillus subtilis and partially purified by Sephadex G-100, hydroxylapatite, and DEAE-Sephadex chromatography. The enzyme catalyzed the exclusive formation of all-trans farnesyl pyrophosphate from isopentenyl pyrophosphate and either dimethylallyl or geranyl pyrophosphate. Mg2+ was essential for the catalytic activity and Mn2+ was less effective. The enzyme was slightly activated by sulfhydryl reagents. This enzyme was markedly stimulated by K+, NH4+, or detergents such as Triton X-100 and Tween 80, unlike the known farnesyl pyrophosphate synthetases from eucaryotes. The molecular weight of the enzyme was estimated by gel filtration to be 67,000. The Michaelis constants for dimethylallyl and geranyl pyrophosphate were 50 microM and 18 microM, respectively.  相似文献   

16.
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.  相似文献   

17.
Muscle from the electric eel Electrophorus electricus contains acetylcholine receptors at 50 times the concentration of normal mammalian muscle and fully one-tenth the concentration of receptors in its electric organ tissue. Receptor is organized much more diffusely over the surface of Electrophorus muscle cells than is the case in normally innervated mammalian skeletal muscle. Receptor was purified from Electrophorus muscle by affinity chromatography on cobra toxin-agarose and found to contain subunits which correspond immunochemically to the alpha, beta, gamma, and delta subunits of receptor from electric organ tissue of Torpedo californica. Receptor purified from Electrophorus muscle appears virtually identical with receptor purified from Electrophorus electric organ tissue.  相似文献   

18.
Deoxyribose 5-phosphate aldolase was purified 41 times from Bacillus cereus induced by growth on deoxyribonucleosides. The purification procedure includes ammonium sulphate fractionation, gel filtration on Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel and preparative electrophoresis on 10% polyacrylamide gel. The enzyme is stable above pH 6.5, but is rapidly inactivated by sulfhydryl reagents. Being insensitive to EDTA, it may be considered as a Class I aldolase. Among a number of compounds tested (including some carboxylic acids, free and phosphorylated pentoses, nucleotides and nucleosides), none has been found to affect the enzyme activity. The enzyme appears to be dimeric, with a subunit Mr of 23,600. A Km of 4.4 x 10(-4) M was calculated for dRib 5-P.  相似文献   

19.
Invertase was purified from the cell extracts of the glutamic acid bacterium (Brevibacterium divaricatum) by ammonium sulfate fractionation, batch theatment with DEAE-cellulose, and column chromatographies on DEAE-cellulose, hydroxyapatite and Sephadex G-200. The purified enzyme was proved to be almost homogeneous by polyacrylamide gel electrophoresis.The molecular weight of the enzyme was estimated to be 92,000 by both gel filtration and SDS-polyacrylamide gel electrophoresis methods. The optimum pH and temperature for the activity were 6.8 and 40°C. The enzyme was highly specific to sucrose as substrate, having only 10% as much activity toward raffinose as that toward sucrose, and being inert toward other disaccharides: maltose, trehalose, lactose, melibiose and cellobiose. The Km value for sucrose was 0.19 M. The enzyme required phosphate or arsenate ions for activity. Monovalent or divalent Cu ions and sulfhydryl reagents inhibited the enzyme.  相似文献   

20.
The protease from Russell's viper venom that activates Factor V was purified by gel filtration on Sephadex G-150 and ion exchange column chromatography on sulfopropyl (SP)-Sephadex C-50. The purified enzyme is a glycoprotein containing 6% carbohydrate. It migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 29,000. A minimum molecular weight of 27,200 was determined by sedimentation equilibrium in the presence of 6 M guanidine hydrochloride. The enzyme is composed of a single polypeptide chain possessing an NH2-terminal sequence of Val-Val-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-His-Pro-Ile. The specific activity of the Factor V activator toward tosyl-L-arginine methyl ester and D-phenylalanyl-L-pipecolyl-L-arginyl-p-nitroanilide was 380 and 11 nmol/min/mg, respectively. The esterase and coagulant activities of the enzyme were readily inhibited by diisopropyl fluorophosphate. The enzyme was not inhibited by bovine antithrombin III in the presence or absence of heparin. The amino acid and carbohydrate compositions of the enzyme are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号