首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A novel strain of Bacillus thuringiensis was isolated from soybean grain dust from Kansas and found to be toxic to larvae of Leptinotarsa decemlineata (Colorado potato bectle). The strain (EG2158) synthesized two parasporal crystals: a rhomboid crystal composed of a 73115 dalton protein and a flat, diamond-shaped crystal composed of a protein of approximately 30 kDa. Plasmid transfer and gene cloning experiments demonstrated that the 73 kDa protein was encoded on an 88 MDa plasmid and that the protein was toxic to the larvae of Colorado potato beetle (CPB). The sequence of the 73 kDa protein, as deduced from the sequence of its gene (cryC), was found to have regions of similarity with several B. thuringiensis crystal proteins: the lepidopteran-toxic P1 proteins of var. kurstaki and berliner, the lepidopteran- and dipteran-toxic P2 (or CRYB1) protein of var. kurstaki, and the dipteran-toxic 130 kDa protein of var. israelensis. While B. megaterium cells harboring the cryC gene from EG2158 synthesized significant amounts of the 73 kDa CRYC protein, Escherichia coli cells did not. The cryC-containing B. megaterium cells produced rhomboid crystals that were toxic to CPB larvae.  相似文献   

3.
The full characterization of a novel insecticidal crystal protein, named Cry9Ca1 according to the revised nomenclature for Cry proteins, from Bacillus thuringiensis serovar tolworthi is reported. The crystal protein has 1,157 amino acids and a molecular mass of 129.8 kDa. It has the typical features of the Lepidoptera-active crystal proteins such as five conserved sequence blocks. Also, it is truncated upon trypsin digestion to a toxic fragment of 68.7 kDa by removal of 43 amino acids at the N terminus and the complete C-terminal half after conserved sequence block 5. The 68.7-kDa fragment is further degraded to a nontoxic 55-kDa fragment. The crystal protein has a fairly broad spectrum of activity against lepidopteran insects, including members of the families Pyralidae, Plutellidae, Sphingidae, and Noctuidae. A 50% lethal concentration of less than 100 ng/cm2 of diet agar was found for diamondback moth, European corn borer, cotton bollworm, and beet armyworm. It is the first insecticidal crystal protein with activity against cutworms. No activity was observed against some beetles, such as Colorado potato beetle. The protein recognizes a receptor different from that recognized by Cry1Ab5 in Ostrinia nubilalis and Plutella xylostella. In Spodoptera exigua and P. xylostella, it binds to a receptor which is also recognized by Cry1Cax but with a lower affinity. In these insects, Cry1Cax probably binds with a higher affinity to an additional receptor which is not recognized by Cry9Ca1. Elimination of a trypsin cleavage site which is responsible for the degradation to a nontoxic fragment did result in protease resistance but not in increased toxicity against O. nubilalis.  相似文献   

4.
The nucleotide sequence of a novel insecticidal crystal protein(Cry)-encoding gene from a Bacillus thuringiensis serotype kurstaki isolate is described. The gene is related to the known coleopteran-active cryIII genes and encodes a CryIIID that is much more active against Colorado potato beetle than other CryIII.  相似文献   

5.
Abstract A structural gene of a crystal protein toxic for coleoptera larvae was cloned from plasmid DNA of Bacillus thuringiensis subsp. tenebrionis (BTT). The DNA was partially digested with restriction enzyme Bam HI and fragments were inserted into cosmid pHC79. In Western blot analysis extracts from infected Escherichia coli cells revealed expression of the BTT crystal protein in antibiotic-resistant cells. Cell lysates from a selected E. coli clone were toxic for larvae of the Colorado potato beetle ( Leptinotarsa decemlineata ). The electrophoretic mobility in SDS gels of crystal protein from E. coli cells was 68 kDa and 74 kDa as observed for BTT-toxin in B. thuringiensis extracts. The cosmids obtained were unstable during cellular propagation. The deletion product still carried the δ-endotoxin gene.  相似文献   

6.
Other than Bacillus thuringiensis Berliner, few bacteria are lethal to the Colorado potato beetle (Leptinotarsa decemlineata [Say]), a major pest of potatoes and eggplant. Expanded use of biologicals for the control of Colorado potato beetle will improve resistance management, reduce pesticide use, and produce novel compounds for potential use in transgenic plants. Using freeze-dried, rehydrated artificial diet in pellet form to screen bacteria lethal to other insects, we determined that strains of Photorhabdus luminescens killed Colorado potato beetle larvae. The LC50 for second instar larvae of strain HM5-1 was 6.4 +/- 1.87 x 10(7) cells per diet pellet. In an attempt to find additional naturally occurring P. luminescens strains toxic to Colorado potato beetle larvae, we recovered, from soil, bacteria that produced a purple pigment. This bacterial strain, identified as Chromobacterium sp. by 16S ribosomal DNA sequencing, was also toxic to Colorado potato beetle larvae within 3 d. The LC50 for second instar larvae for these bacteria was 2.0 +/- 0.79 x 10(8) cells per diet pellet, while the LC50 was approximately 1 log lower for third instar larvae. P. luminescens appeared to kill by means of a protein toxin that may be similar to the described lepidopteran protein toxins. Based on the heat and acid stability, the toxin or toxins that Chromobacterium sp. produces, while not fully characterized, do not appear to be typical proteins. In both bacteria, the toxins are made after exponential growth ceases.  相似文献   

7.
Two novel strains of Bacillus thuringiensis toxic to coleopterans.   总被引:3,自引:2,他引:1       下载免费PDF全文
Two novel strains of Bacillus thuringiensis were isolated from native habitats by the use of genes coding for proteins toxic to coleopterans (cryIII genes) as hybridization probes. Strain EG2838 (isolated by the use of the cryIIIA probe) contained a cryIIIA-hybridizing plasmid of approximately 100 MDa and synthesized crystal proteins of approximately 200 (doublet), 74, 70, 32, and 28 kDa. Strain EG4961 (isolated by the use of a cryIIIA-related probe) contained a cryIIIA-hybridizing plasmid of approximately 95 MDa and synthesized crystal proteins of 74, 70, and 30 kDa. Structural relationships among the crystal proteins of strains EG2838 and EG4961 were detected; antibodies to the CryIIIA protein toxic to coleopterans reacted with the 74- and 70-kDa proteins of EG2838 and EG4961, antibodies to the 32-kDa plus 28-kDa proteins of EG2838 reacted with the 30-kDa protein of EG4961, and antibodies to the 200-kDa proteins of EG2838 reacted with the 28-kDa protein of EG2838. Experiments with B. thuringiensis flagella antibody reagents demonstrated that EG2838 belongs to H serotype 9 (reference strain B. thuringiensis subsp. tolworthi) and that EG4961 belongs to H serotype 18 (reference strain B. thuringiensis subsp. kumamotoensis). A mixture of spores plus crystal proteins of either EG2838 or EG4961 was toxic to the larvae of Colorado potato beetle (Leptinotarsa decemlineata), and significantly, the EG4961 mixture was also toxic to the larvae of southern corn rootworm (Diabrotica undecimpunctata howardi). DNA restriction blot analysis suggested that strains EG2838 and EG4961 each contained a unique gene coding for a protein toxic to coleopterans.  相似文献   

8.
Two novel strains of Bacillus thuringiensis toxic to coleopterans.   总被引:1,自引:0,他引:1  
Two novel strains of Bacillus thuringiensis were isolated from native habitats by the use of genes coding for proteins toxic to coleopterans (cryIII genes) as hybridization probes. Strain EG2838 (isolated by the use of the cryIIIA probe) contained a cryIIIA-hybridizing plasmid of approximately 100 MDa and synthesized crystal proteins of approximately 200 (doublet), 74, 70, 32, and 28 kDa. Strain EG4961 (isolated by the use of a cryIIIA-related probe) contained a cryIIIA-hybridizing plasmid of approximately 95 MDa and synthesized crystal proteins of 74, 70, and 30 kDa. Structural relationships among the crystal proteins of strains EG2838 and EG4961 were detected; antibodies to the CryIIIA protein toxic to coleopterans reacted with the 74- and 70-kDa proteins of EG2838 and EG4961, antibodies to the 32-kDa plus 28-kDa proteins of EG2838 reacted with the 30-kDa protein of EG4961, and antibodies to the 200-kDa proteins of EG2838 reacted with the 28-kDa protein of EG2838. Experiments with B. thuringiensis flagella antibody reagents demonstrated that EG2838 belongs to H serotype 9 (reference strain B. thuringiensis subsp. tolworthi) and that EG4961 belongs to H serotype 18 (reference strain B. thuringiensis subsp. kumamotoensis). A mixture of spores plus crystal proteins of either EG2838 or EG4961 was toxic to the larvae of Colorado potato beetle (Leptinotarsa decemlineata), and significantly, the EG4961 mixture was also toxic to the larvae of southern corn rootworm (Diabrotica undecimpunctata howardi). DNA restriction blot analysis suggested that strains EG2838 and EG4961 each contained a unique gene coding for a protein toxic to coleopterans.  相似文献   

9.
Using oligonucleotide probes we have isolated a DNA fragment encoding an insecticidal toxin of the coleopteran specific Bacillus thuringiensis subsp. tenebrionis. The gene was altered by site directed mutagenesis at its 5'-end and adapted for general cloning and expression purposes with a linker including a start codon and new restriction sites. The constructs were inserted into several vector plasmids and expressed in Escherichia coli. Expression E. coli was strongly enhanced by the lac-promoter. A fusion protein with phage MS2-polymerase was produced together with a 67 kDa protein also found for normal expression of the toxin gene. Synthesis of the latter protein indicated a second ribosome binding site at the 5'-terminus of the toxin encoding sequence. Toxin-containing proteins were identified by Western blot analysis. The positive cell extracts from E. coli had insecticidal activity on larvae of the Colorado potato beetle. The cloned gene is not homologous to a gene previously cloned by us whose gene products were also toxic to coleopteran larvae.  相似文献   

10.
The δ-endo toxin proteins from Bacillus thuringiensis which kill the larvae of various scarabaeid beetles such as Anomala cuprea, A. rufocuprea and Popillia japonica were purified by DEAE ion exchange chromatography. A protein with a molecular size of 130 kDa was purified. During the purification a minor peak was also detected which was estimated to be 67 kDa by SDS-PAGE. Both 130 and 67 kDa proteins showed larvicidal activity against A. cuprea. The lethal concentration of the 130 kDa protein which killed 50% of the larvae tested (LC50) against A. cuprea was 2 μg g1 compost. A comparison by SDS-PAGE of the V8 protease digestion pattern of the 130 and 67 kDa larvicidal proteins showed that proteolytic resistant core peptides of approximately 60 kDa molecular size were resulted. The N -terminus amino acid sequence of the 130 and 67 kDa proteins was determined to be NH2-XXPNNQNEYEIIDAL and NH2-XSRNPGTFI, respectively, which is not identical to the sequence of CryIA, CryIB, CryIC and CryIII proteins.  相似文献   

11.
We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity.  相似文献   

12.
The parasporal body of Bacillus thuringiensis subsp. shandongiensis was characterized in terms of its structure, protein composition, and toxicological properties against several types of insects. The crystals of B. thuringiensis shandongiensis appear to consist of a major protein of 144 kDa present in an spherical inclusion, as determined by transmission electron microscopy, titration curve analysis, and SDS-PAGE of the solubilized crystals. A second protein of ca. 60 kDa is present in trace amounts and appears to be associated with a small bar-shaped inclusion. The 144-kDa protein has been characterized by isoelectric point determination, N-terminal amino acid sequence analysis, amino acid analysis, and immunological cross reactivity. Its N-terminal amino acid sequence differed from that of other B. thuringiensis crystal proteins. The 144-kDa protein was not immunologically related to the crystal proteins of two toxic serovars (B. thuringiensis israelensis and B. thuringiensis kurstaki HD-1) and one nontoxic serovar (B. thuringiensis indiana), as shown in immunoblots probed with antiserum raised against the 144-kDa B. thuringiensis shandongiensis protein, the B. thuringiensis israelensis crystal proteins, and the trypsin resistant fragment of B. thuringiensis kurstaki P1 proteins. In contrast to most B. thuringiensis serovars, B. thuringiensis shandongiensis crystals did not dissolve at pH 12. Solubilization was achieved in sodium bicarbonate at pH 8.3 and in the presence of 25 mM dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The complete nucleotide sequence of a cloned gene encoding a 130-kDa crystal protein of Bacillus thuringiensis (B.t.) subspecies israelensis has been determined. The recombinant protein (Bt8) was purified and shown to be a mosquito-specific toxin with a LC50 value of 43 ng/ml to third-instar larvae of Aedes aegypti. Bt8 is processed by proteases or midgut extracts of mosquito larvae into toxic fragments of 68-78 kDa. Deletion mapping indicated that the active fragment of Bt8 is localized in the N-terminal half of the protoxin molecule. The deduced amino acid sequence of Bt8 has been compared with that of Bt2, a Lepidoptera-specific toxin, previously cloned from Bacillus thuringiensis berliner. Highly homologous amino acid stretches are present in the C-terminal half of the proteins. The N-terminal parts show much less sequence homology but they display a strikingly similar distribution of hydrophilic and hydrophobic amino acids. In addition, Bt8 and Bt2 show a significant immunological cross-reaction. The data indicate that although these B.t. delta endotoxins exhibit a different insect-host specificity, they are structurally related and might use a similar mechanism to interact with insect cell membranes.  相似文献   

14.
Pymetrozine is a selective insecticide that targets aphids. Published assessments of the effects of pymetrozine on nontarget organisms focus mainly on predatory insects, and they rarely indicate toxicity. In a laboratory bioassay, survival of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), larvae was not affected by pymetrozine exposure. We subsequently used pymetrozine to implement low-aphid-density treatments in a field experiment that involved separate manipulations of Colorado potato beetle density. Unexpectedly, the addition of Colorado potato beetle adults and eggs did not increase the densities of Colorado potato beetle larvae in plots that were sprayed with pymetrozine (applied with water and an adjuvant). In control plots sprayed with water and adjuvant (without pymetrozine), addition of Colorado potato beetles increased densities of their larvae. Data collected on a smaller scale suggest that a behavioral mechanism underlies the population-level pattern: Colorado potato beetle larvae become more active and are less likely to remain on a host plant after exposure to pymetrozine. Thus, potato, Solanum tuberosum L., growers who use pymetrozine against aphids also might benefit in terms of Colorado potato beetle control.  相似文献   

15.
Plants are increasingly used as production platforms of various heterologous proteins, but rapid protein turnover can seriously limit the steady-state expression level. Little is known about specific plant proteases involved in this process. In an attempt to obtain potato (Solanum tuberosum cv Desirée) plants resistant to Colorado potato beetle (Leptinotarsa decemlineata Say) larvae, the protease inhibitor equistatin was expressed under the control of strong, light-inducible and constitutive promoters and was targeted to the secretory pathway with and without endoplasmic reticulum retention signal. All constructs yielded similar stepwise protein degradation patterns, which considerably reduced the amount of active inhibitor in planta and resulted in insufficient levels for resistance against Colorado potato beetle larvae. Affinity purification of the degradation products and N-terminal sequencing allowed the identification of the amino acid P(1)-positions (asparagine [Asn]-13, lysine-56, Asn-82, and arginine-151) that were cleaved in planta. The proteases involved in the equistatin degradation were characterized with synthetic substrates and inhibitors. Kininogen domain 3 completely inhibited equistatin degradation in vitro. The results indicate that arginine/lysine-specific and legumain-type Asn-specific cysteine proteases seriously impede the functional accumulation of recombinant equistatin in planta. General strategies to improve the resistance to proteases of heterologous proteins in plants are proposed.  相似文献   

16.
Two genes encoding insecticidal crystal proteins from Bacillus thuringiensis subsp. kurstaki HD-1 were cloned and sequenced. Both genes, designated cryB1 and cryB2, encode polypeptides of 633 amino acids having a molecular mass of ca. 71 kilodaltons (kDa). Despite the fact that these two proteins display 87% identity in amino acid sequence, they exhibit different toxin specificities. The cryB1 gene product is toxic to both dipteran (Aedes aegypti) and lepidopteran (Manduca sexta) larvae, whereas the cryB2 gene product is toxic only to the latter. DNA sequence analysis indicates that cryB1 is the distal gene of an operon which is comprised of three open reading frames (designated orf1, orf2, and cryB1). The proteins encoded by cryB1 and orf2 are components of small cuboidal crystals found in several subspecies and strains of B. thuringiensis; it is not known whether the orf1 or cryB2 gene products are present in cuboidal crystals. The protein encoded by orf2 has an electrophoretic mobility corresponding to a molecular mass of ca. 50 kDa, although the gene has a coding capacity for a polypeptide of ca. 29 kDa. Examination of the deduced amino acid sequence for this protein reveals an unusual structure which may account for its aberrant electrophoretic mobility: it contains a 15-amino-acid motif repeated 11 times in tandem. Escherichia coli extracts prepared from cells expressing only orf1 and orf2 are not toxic to either test insect.  相似文献   

17.
Current control of the sheep blowfly (Lucilia cuprina) relies on chemical insecticides, however, with the development of resistance and increasing concerns about human health and environmental residues, alternative strategies to control this economically important pest are required. In this study, we have identified several isolates of Bacillus thuringiensis (Bt), collected from various Australian soil samples, that produce crystals containing 130 and 28 kDa proteins. These isolates were highly toxic to feeding larvae in both in vitro bioassays and in vivo on sheep. By N-terminal amino acid sequencing, we identified the smaller crystal band (28 kDa) as a cytological (Cyt) protein. Upon solubilization and proteolytic processing by trypsin, the 130 kDa crystal protein yielded among others, a truncated 55-60 kDa toxin moiety which exhibited larvicidal activity against sheep blowfly. The amino-terminal sequence of the trypsin-resistant protein band revealed that this Bt endotoxin was encoded by a new cry gene. The novel cry protein was present in all the strains that were highly toxic in the larval assay. We have also identified from one of the isolates, a novel secretory toxin with larvicidal activity.  相似文献   

18.
Crystals were purified from spore-crystal complexes of Bacillus sphaericus 2362 by disruption in a French pressure cell followed by centrifugation through 48% (wt/vol) NaBr. Crystals from such preparations had a 50% lethal concentration of 6 ng of protein per ml for the larvae of the mosquito Culex pipiens. When subjected to polyacrylamide gel electrophoresis under denaturing conditions, the proteins in B. sphaericus crystals migrated in positions corresponding to 43, 63, 98, 110, and 125 kilodaltons (kDa); solubilization of the crystal at pH 12 with NaOH eliminated all but the bands at 43 and 63 kDa. Since NaOH-solubilized preparations were toxic to mosquito larvae, these proteins were purified to electrophoretic homogeneity and antiserum was obtained to each. Analysis of the two purified proteins indicated that the 43-kDa protein was toxic to mosquito larvae (50% lethal concentration, 35 ng of protein per ml), whereas the 63-kDa protein was not. Further differences between them were their amino acid compositions, their lack of immunological cross-reactivity, their opposite net charges at pH 7.5, and their susceptibility to digestion by larval midgut proteases (the 63-kDa protein was highly susceptible, whereas the 43-kDa protein was not). The sequence of the 40 N-terminal residues of the 43-kDa protein was determined and found to contain a high percentage of hydrophobic amino acids. The sequence of the 63-kDa protein could not be determined, since it had multiple N termini. By electrophoretically separating the crystal proteins and then electroblotting onto nitrocellulose paper and visualizing the bands with antisera to the 43- and 63-kDa proteins in conjunction with an immunoblot assay, it was found that the high-molecular-mass crystal proteins (98 to 125 kDa) contained antigenic determinants of both proteins. These results suggested that the lower-molecular-weight crystal proteins detected in polyacrylamide gels after electrophoresis under denaturing conditions were derivatives of one or more of the higher-molecular-weight crystal proteins. In vivo studies of the products of crystal degradation by larvae of Culex pipiens indicated that the high-molecular-weight proteins and the 63-kDa antigenic determinants were rapidly degraded and that a 40-kDa protein related to the 43-kDa toxin persisted for the duration of the experiment (4 h). Some of the studies performed with B.sphaericus 2362 were extended to strains 1593, 1691, and 2297 of this species with results which indicated a high degree of similarity between the crystal proteins of all these larvicidal strains.  相似文献   

19.
The cry19A operon of Bacillus thuringiensis subsp. jegathesan encodes two proteins, mosquitocidal Cry19A (ORF1; 75 kDa) and an ORF2 (60 kDa) of unknown function. Expression of the cry19A operon in an acrystalliferous strain of B. thuringiensis (4Q7) yielded one small crystal per cell, whereas no crystals were produced when cry19A or orf2 was expressed alone. To determine the function of the ORF2 protein, different combinations of Cry19A, ORF2, and the N- or C-terminal half of Cry1C were synthesized in strain 4Q7. Stable crystalline inclusions of these fusion proteins similar in shape to those in the strain harboring the wild-type operon were observed in sporulating cells. Comparative analysis showed that ORF2 shares considerable amino acid sequence identity with the C-terminal region of large Cry proteins. Together, these results suggest that ORF2 assists in synthesis and crystallization of Cry19A by functioning like the C-terminal domain characteristic of Cry protein in the 130-kDa mass range. In addition, to determine whether overexpression of the cry19A operon stabilized its shape and increased Cry19A yield, it was expressed under the control of the strong chimeric cyt1A-p/STAB-SD promoter. Interestingly, in contrast to the expression seen with the native promoter, overexpression of the operon yielded uniform bipyramidal crystals that were 4-fold larger on average than the wild-type crystal. In bioassays using the 4th instar larvae of Culex quinquefasciatus, the strain producing the larger Cry19A crystal showed moderate larvicidal activity that was 4-fold (95% lethal concentration [LC(95)] = 1.9 μg/ml) more toxic than the activity produced in the strain harboring the wild-type operon (LC(95) = 8.2 μg/ml).  相似文献   

20.
Abstract Parasporal crystals of the recently isolated Bacillus thuringiensis var. tenebrionis are toxic for coleopteran larvae. Unlike those of other strains they are soluble either in aqueous solutions of NaBr at neutral pH or in water after titration to pH values above pH 10.0. The dissolved crystal protein readily forms crystals after removal of the salt or neutralization. The crystal protein was not found to differ much in the amino acid composition from other crystal proteins. The parasporal crystals are composed of subunits of M r 68 000 which are not linked by disulfide bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号