首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recently discovered extracellular poly[(R)-3-hydroxybutyrate] (PHB) depolymerase PhaZ7 of Paucimonas lemoignei represents the first member of a new subgroup (EC 3.1.1.75) of serine hydrolases with no significant amino acid similarities to conventional PHB depolymerases, lipases or other hydrolases except for a potential lipase box-like motif (Ala-His-Ser136-Met-Gly) and potential candidates for catalytic triad and oxyanion pocket amino acids. In order to identify amino acids essential for activity 11 mutants of phaZ7 were generated by site-directed mutagenesis and expressed in recombinant protease-deficient Bacillus subtilis WB800. The wild-type depolymerase and 10 of the 11 mutant proteins (except for Ser136Cys) were expressed and efficiently secreted by B. subtilis as shown by Western blots of cell-free culture fluid proteins. No PHB depolymerase activity was detected in strains harbouring one of the following substitutions: His47Ala, Ser136Ala, Asp242Ala, Asp242Asn, His306Ala, indicating the importance of these amino acids for activity. Replacement of Ser136 by Thr resulted in a decrease of activity to about 20% of the wild-type level and suggested that the hydroxy group of the serine side chain is important for activity but can be partially replaced by the hydroxy function of threonine. Alterations of Asp256 to Ala or Asn or of the putative serine hydrolase pentapeptide motif (Ala-His-Ser136-Met-Gly) to a lipase box consensus sequence (Gly134-His-Ser136-Met-Gly) or to the PHB depolymerase box consensus sequence (Gly134-Leu135-Ser136-Met-Gly) had no significant effect on PHB depolymerase activity, indicating that these amino acids or sequence motifs were not essential for activity. In conclusion, the PHB depolymerase PhaZ7 is a serine hydrolase with a catalytic triad and oxyanion pocket consisting of His47, Ser136, Asp242 and His306.  相似文献   

2.
The crystal structure of poly(3-hydroxybutyrate) (PHB) depolymerase PhaZ7 purified from Paucimonas lemoignei was determined at 1.90 Å resolution. The structure consists of a single domain with an α/β hydrolase fold in its core. The active site is analogous to that of serine esterases/lipases and is characterized by the presence of a catalytic triad comprising Ser136, Asp242, and His306. Comparison with other structures in the Protein Data Bank showed a high level of similarity with the Bacillus subtilis lipase LipA (RMSD, 1.55 Å). Structural comparison with Penicillium funiculosum PHB depolymerase, the only PHB depolymerase whose structure is already known, revealed significant differences, resulting in an RMSD of 2.80-3.58 Å. The two enzymes appear to utilize different types of solvent-exposed residues for biopolymer binding, with aliphatic and hydroxyl residues used in P. funiculosum PHB depolymerase and aromatic residues in PhaZ7. Moreover, the active site of P. funiculosum PHB depolymerase is accessible to the substrate in contrast to the active site of PhaZ7, which is buried. Hence, considerable conformational changes are required in PhaZ7 for the creation of a channel leading to the active site. Taken together, the structural data suggest that PhaZ7 and P. funiculosum PHB depolymerase have adopted different strategies for effective substrate binding in response to their diverse substrate specificity and the lack of a substrate-binding domain.  相似文献   

3.
Abstract Mutational analysis of the poly(3-hydroxybutyrate) (PHB) depolymerase A of Pseudomonas lemoignei and of the poly(3-hydroxybutyrate) depolymerase of Alcaligenes faecalis revealed that S138 ( P. lemoignei ) and S139 ( A. faecalis ) are essential for activity. Both serines are part of a strictly conserved pentapeptide sequence which is present in all poly(3-hydroxybutyrate) depolymerases analyzed so far (G-L-S-S(A)-G) and which resembles the lipase box of lipases and other serine hydrolases (G-X-S-X-G). Mutation of another conserved serine, namely S195 ( P. lemoignei ) and S196 ( A. faecalis ), resulted in mutant proteinswith almost full activity and proved that S195 and S196 are not essential for activity. The results indicate the structural and functional relationship of poly(3-hydroxybutyrate) depolymerases to the family of serine hydrolases.  相似文献   

4.
Paracoccus denitrificans degraded poly(3-hydroxybutyrate) (PHB) in the cells under carbon source starvation. Intracellular poly(3-hydroxyalkanoate) (PHA) depolymerase gene (phaZ) was identified near the PHA synthase gene (phaC) of P. denitrificans. Cell extract of Escherichia coli carrying lacZ--phaZ fusion gene degraded protease-treated PHB granules. Reaction products were thought to be mainly D(--)-3-hydroxybutyrate (3HB) dimer and 3HB oligomer. Diisopropylfluorophosphonate and Triton X-100 exhibited an inhibitory effect on the degradation of PHB granules. When cell extract of the recombinant E. coli was used, Mg(2+) ion inhibited PHB degradation. However, the inhibitory effect by Mg(2+) ion was not observed using the cell extract of P. denitrificans.  相似文献   

5.
Abstract Intracellular degradation of poly(3-hydroxybutyrate) (PHB) in bacteria is not yet clear. The properties of the autodigestion of native PHB granules from Zooglea ramigera I-16-M were examined. The release of d (−)-3-hydroxybutyrate was observed only at pH values higher than about 8.5 and at relatively high ionic strength (optimal concentration 200 mM NaCl). Triton X-100 and diisopropylfluorophosphate inhibited this reaction. Addition of the supernatant fraction of Z. ramigera did not increase the release of d (−)-3-hydroxybutyrate from the native PHB granules. On the other hand, using the protease-treated PHB granules from Alcaligenes eutrophus as a substrate, PHB depolymerase activity was detected in the supernatant fraction of Z. ramigera cells. The soluble PHB depolymerase showed similar properties to the enzyme in the PHB granules. Since PHB depolymerase activity was found in fractions containing d (−)-3-hydroxybutyrate oligomer hydrolase activity, which were separated by DEAE-Toyopearl or by Sephacryl S-100, it is possible that the intracellular PHB depolymerase is identical to the oligomer hydrolase which has been purified already.  相似文献   

6.
A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.  相似文献   

7.
Summary Penicillium sp. DS9713a-01 was obtained by ultraviolet (u.v.) light mutagenesis from the Penicillium sp. DS9713a which can degrade poly (3-hydroxybutyrate) (PHB). The enzymatic activity of DS9713a-01 was 97% higher than that of the wild-type strain. The DS9713a-01 mutant could completely degrade PHB films in 5 days; however, the wild-type strain achieved only 61% at the same time. The extracellular PHB depolymerase was purified from the culture medium containing PHB as the sole carbon source by filtration, ammonium sulfate precipitation and chromatography on Sepharose CL-6B. The molecular weight of the PHB depolymerase was about 15.1kDa determined by SDS-polyacrylamide gel electrophoresis. The optimum activity of the PHB depolymerase was observed at pH 8.6 and 50 °C. The enzyme was stable at temperatures below 37 °C and in the pH range from 8.0 to 9.2. The activity of PHB depolymerase could be activated or inhibited by some metal ions. The apparent K m value was 0.164 mg ml−1. Mass spectrometric analysis of the water-soluble products after enzymatic degradation revealed that the primary product was the monomer, 3-hydroxybutyric acid.  相似文献   

8.
Abstract We have isolated some mould strains that can grow under acid conditions with poly(3-hydroxybutyrate) (PHB) as sole carbon source, and secrete PHB hydrolases active at pH values at least down to 3. An improved assay method for such enzymes using a pH stat has been developed, and used to determine the dependence of reaction rate on enzyme and polymer concentrations. The implications of these kinetic properties of the PHB hydrolase for its mode of action are discussed.  相似文献   

9.
10.
The biodegradability of microbial polythioesters (PTEs), a novel class of biopolymers which were discovered recently and can be produced by polyhydroxyalkanoate (PHA)-accumulating bacteria, was studied. Using poly(3-hydroxybutyrate-co-3-mercaptopropionate) [poly(3HB-co-3MP)] as sole carbon source for screening, 22 new bacterial strains were isolated and characterized. Interestingly, none of the PHA-degrading bacteria was able to utilize the homopolymer poly(3MP) as a carbon source for growth or to form clear zones on poly(3MP)-containing agar plates. The extracellular PHA depolymerases from two strains ( Schlegelella thermodepolymerans, Pseudomonas indica K2) were purified to electrophoretic homogeneity and biochemically characterized. The PHA depolymerase of S. thermodepolymerans exhibited a temperate optimum of about 75°C to 80°C and was stable at 70°C for more than 24 h. Regarding the substrate specificities of the PHA depolymerase of S. thermodepolymerans, enzyme activities decreased significantly with increasing 3MP content of the copolymer substrates. Interestingly, no activity could be detected with homoPTEs consisting only of 3MP or of 3-mercaptobutyrate. Similar results were obtained with the PHA depolymerases PhaZ2, PhaZ5 and PhaZ7 of Paucimonas lemoignei which were also investigated. The PHA depolymerase of Ps. indica K2 did not cleave any of the investigated polymers containing 3MP. Gas chromatography, infrared and 1H-NMR spectrometry and matrix-assisted laser desorption/ionization time-of-flight analysis revealed that 3MPs containing oligomers were enriched in the water-insoluble fraction remaining after partial digestion of poly(3HB-co-3MP) by purified poly(3HB) depolymerase of S. thermodepolymerans. In contrast, 3HB was enriched in the water-soluble fraction, which also contained 3HB-co-3MP dimer obtained by partial digestion of this copolymer by the enzyme. This study clearly indicates that PHA depolymerases are specific for oxoester linkages of PHAs and that the thioester bonds of PTEs cannot be cleaved by this type of enzyme.This publication is dedicated to Prof. Dr. Hans G. Schlegel in honor of his 80th birthday  相似文献   

11.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

12.
A DNA fragment carrying the gene encoding poly(3-hydroxybutyrate) (P(3HB)) depolymerase was cloned from the genomic DNA of Marinobacter sp. DNA sequencing analysis revealed that the Marinobacter sp. P(3HB) depolymerase gene is composed of 1734 bp and encodes 578 amino acids with a molecular mass of 61,757 Da. A sequence homology search showed that the deduced protein contains the signal peptide, catalytic domain (CD), cadherin-type linker domain (LD), and two substrate-binding domain (SBD). The fusion proteins of glutathione S-transferase (GST) with the CD showed the hydrolytic activity for denatured P(3HB) (dP(3HB)), P(3HB) emulsion (eP(3HB)) and p-nitrophenylbutyrate. On the other hand, the fusion proteins lacking the SBD showed much lower hydrolytic activity for dP(3HB) compared to the proteins containing both CD and SBD. In addition, binding tests revealed that the SBDs are specifically bound not to eP(3HB) but dP(3HB). These suggest that the SBDs play a crucial role in the enzymatic hydrolysis of dP(3HB) that is a solid substrate.  相似文献   

13.
Abstract Radiolabelled glucose was added to a batch culture of Alcaligenes eutrophus during the accumulation of poly(3-hydroxybutyrate) (PHB) to label newly synthesized polymer. The specific radioactivity of the polymer continued to increase, by approximately 30%, after the cessation of PHB accumulation, indicating that turnover of PHB was occurring. Fractionation of PHB showed that high molecular mass polymer was gradually replaced by PHB of lower molecular mass. Turnover of PHB is the cause of the slow decline in the molecular mass of PHB following the cessation of polymer accumulation but is unlikely to be the sole reason for the more rapid decrease in the molecular mass of PHB during the accumulation phase.  相似文献   

14.
Abstract The effect of poly(3-hydroxybutyrate) (PHB) content on the survival of wild-type strains and PHB negative mutants of Bacillus megaterium and Alcaligenes eutrophus in natural waters was studied. The survival strategy of B. megaterium was dominated by the development of resistant forms, but the number of the wild-type vegetative cells was higher than that of PHB mutant strain. In some environmental conditions the mutant spores needed a heat shock for germination, a fact that suggests, for the first time, that PHB plays a role in this phenomenon. Survival of A. eutrophus wild-type strain in all experiments was higher compared to the PHB mutant, and differences were significant. In raw river water, survival of both species was lower than in sterile river water.  相似文献   

15.
Five amino acids (Y105, Y176, Y189, Y189, W207) that constitute the substrate binding site of PHB depolymerase PhaZ7 were identified. All residues are located at a single surface‐exposed location of PhaZ7. Exchange of these amino acids by less hydrophobic, hydrophilic or negatively charged residues reduced binding of PhaZ7 to PHB. Modifications of other residues at the PhaZ7 surface (F9, Y66, Y103, Y124, Y169, Y172, Y173, F198, Y203, Y204, F251, W252) had no effect on substrate binding. The PhaZ7 wild‐type protein, three muteins with single amino acid exchanges (Y105A, Y105E, Y190E), a PhaZ7 variant with deletion of residues 202–208, and PhaZ7 in which the active‐site serine had been replaced by alanine (S136A) were crystallized and their structures were determined at 1.6–2.0 Å resolution. The structures were almost identical but revealed flexibility of some regions. Structural analysis of PhaZ7 (S136A) with bound 3‐hydroxybutyrate tetramer showed that the substrate binds in a cleft that is composed of Y105, Y176, Y189 and Y190 and thus confirmed the data obtained by site‐directed mutagenesis. To the best of our knowledge this is the first example in which the substrate binding site of a PHB depolymerase is documented at a molecular and structural level.  相似文献   

16.
Occurrence of poly-d(−)-3-hydroxyalkanoates in the genus Bacillus   总被引:1,自引:0,他引:1  
A range of Bacillus strains were examined for their ability to accumulate poly-D(-)-3-hydroxyalkanoates (poly-HAKs) which are naturally occurring materials that are optically active, biodegradable thermoplastics. The organisms could produce poly-D(-)-3-hydroxybutyrate (poly-HB) up to 50% of cell dry weight. The content of poly-HB in the cells varied with the growth conditions. The addition of propionate or valerate in the culture resulted in a synthesis of poly-D(-)-3-hydroxyvalerate (poly-HV). All the strains tested had the ability to synthesize the co-polyester poly-HB-co-HV.  相似文献   

17.
Here, we report on the biodegradation of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by a novel thermoalkanophilic extracellular esterase from the soil isolate Streptomyces sp. IN1. Preliminary screening and isolation of the bacterium was done using polyhydroxyalkanoate latex medium (PHALM). The isolate was cultured with P(3HB-co-3HV) as the only carbon source and by-products of degradation were derivatized with [N,O-bis(trimethylsilyl)trifluroacetamide] (BSTFA). These products were identified by gas chromatography/mass spectrometry (GC-MS) as silylated hydroxybutyric acid (3HB) and hydroxyvaleric acid, suggesting extracellular depolymerase activity by the isolate. The depolymerase was isolated by (NH4)2SO4 fractionation, dialyzed and purified using fast protein liquid chromatography (FPLC), and confirmed using P(3HB-co-3HV) as a sole source of carbon. The molecular mass of the FPLC purified enzyme occurred between 45 and 66 kDa (SDS-PAGE), but was confirmed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to be 62 kDa. Enzyme activity was significantly inhibited by phenylmethylsulfonyl fluoride (PMSF), dithiothreitol (DTT), and Tween 80, but induced by azide (N3−). Sensitivity to PMSF, DTT, and Tween 80 suggests the involvement of serine as an active site amino acid with disulphide bonds contributing to the catalytic activity, as well as the presence of hydrophobic regions in the enzyme. Non-inhibition of activity by azide indicates that metal ions may not be required as cofactors for activity. This observation was further corroborated by the decrease in enzyme activity in the presence of metal ions such as Ca2+, Mg2+, Na+, and K+. The kinetic parameters, Vmax and Km, in the presence of p-nitrophenylbutyrate as substrate, were determined to be 5.06 × 10−1 ??mol min−1 and 6.73 × 10−1 mM, respectively.  相似文献   

18.
Glycerol 1,3-diglycerol diacrylate-grafted poly(3-hydroxyoctanoate) (GDD-g-PHO) copolymers were prepared by heating homogeneous solutions of PHO, GDD monomer and benzoylperoxide initiator. Experiments showed that GDD was successfully grafted onto the PHO chains and that the resulting copolymers had enhanced thermal properties and mechanical strengths. The surfaces and the bulk of GDD-g-PHO copolymers became more hydrophilic as the GDD grafting density in the copolymer increased. Measurements of the growth of Chinese hamster ovary cells and the adsorption of blood proteins and platelets in vitro showed that biocompatibility was also enhanced by grafting of GDD groups. These results indicate that the GDD-g-PHO copolymers are promising materials for biocompatible biomedical applications.  相似文献   

19.
Hydrolysis of native (amorphous) polyhydroxybutyrate (nPHB) granules isolated from different sources by soluble PHB depolymerase of Rhodospirillum rubrum in vitro requires the presence of a heat-stable compound (activator). The activator was purified and was resistant against various physical and chemical stresses such as heat (up to 130 degrees C), pH 1-12, dryness, oxidation by H2O2, reducing and denaturing compounds (2-mercaptoethanol, 5 M guanidinium-HCl) and many solvents including phenol/chloroform. The activator coding gene was identified by N-terminal sequencing of the purified protein, and the deduced protein showed significant homology to magnetosome-associated protein (Mms16) of magnetotactic bacteria. Analysis of the activation process in vitro showed that the activator acts on nPHB granules but not on the depolymerase. The effect of the activator could be mimicked by pretreatment of nPHB granules with trypsin or other proteases but protease activity of the purified activator was not detected. Evidence is shown that different mechanisms were responsible for activation of nPHB by trypsin and activator, respectively. PHB granule-associated protein (PhaP) of Ralstonia eutropha nPHB granules were cleaved by trypsin but no cleavage occurred after activator treatment. Hydrolysis of artificial protein-free PHB granules coated with negatively charged detergents (sodium dodecyl sulfate (SDS), cholate but not cetyltrimethyl-ammonium bromide (CTAB)) did not require activation and confirmed that surface layer proteins of nPHB granules are the targets of the activator rather than lipids. All experimental data are in agreement with the assumption that trypsin and the activator enable the PHB depolymerase to find and to bind to the polymer surface: trypsin by removing a portion of proteins from the polymer surface, the activator by modifying the surface structure in a not yet understood manner presumably by interaction with phasins of the proteinous surface layer of nPHB.  相似文献   

20.
The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides   总被引:2,自引:0,他引:2  
In recent years industrial interest has been focussed on the evaluation of poly(3-hydroxyalkanoates) (PHA) as potentially biodegradable plastics for a wide range of technical applications. Studies have been carried out in order to optimize growth and culture conditions for the intracellular formation of PHA in the phototrophic, purple, non-sulfur bacterium Rhodobacter sphaeroides. Its potential to produce polyesters other than poly(3-hydroxybutyrate) (PHB) was investigated. On an industrial scale, the use of photosynthetic bacteria could harness sunlight as an energy source for the production of these materials. R. sphaeroides was grown anaerobically in the light on different carbon sources. Under nitrogenlimiting conditions a PHA content of up to 60 to 70% of the cellular dry weight was detected. In all of the cases studied, the storage polymer contained approximately 98 mol% of 3-hydroxybutyrate (HB) and 2 mol% 3-hydroxyvalerate (HV) monomer units. Decreasing light intensities did not stimulate PHA formation. Compared to Rhodospirillum rubrum (another member of the family of Rhodospirillaceae), R. sphaeroides showed a limited flexibility in its ability to form PHA with varying monomer unit compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号