首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incidence of potato virus Y (PVY) infection was assessed in samples of potato tubers, cv. Record, taken from Scottish seed stocks and English ware crops grown from some of these seed stocks. PVY was readily detected by ELISA of tuber sprouts. PVY-infected tubers were found in 10 seed stocks of 84 tested. The mean level of virus infection was 0.23%, 0.76% and 0.56% in Super Elite, Elite and AA stocks respectively. In 46 commercial ware crops grown from some of these seed stocks, a substantial proportion of the harvested tubers in all but one of the crops were infected with PVY, the mean percentage of infected tubers was 58.5%. Ware crops grown from seven seed stocks in which PVY had been detected (mean 6.2% infection in seed) contained a mean of 70% infected tubers, compared with 56% infection in crops grown from 39 stocks in which PVY was not detected in the seed tubers. The predominant PVY strain detected in the ware crops was the veinal necrosis strain (PVYvn).  相似文献   

2.
Factors affecting the detection of potato leafroll virus (PLRV) by enzyme-linked immunosorbent assay (ELISA) in tubers of field-grown potato plants with primary or secondary infection were studied. The reactions of extracts of virus-free potato tubers were minimised by pre-incubating the extracts at room temperature and by careful choice of the dilution of enzyme-conjugated globulin. PLRV was reliably detected in tubers produced by secondarily infected plants of all six cultivars tested. PLRV concentration was greater in heel-end than in rose-end vascular tissue of recently harvested tubers but increased in rose-end tissue when tubers stored at 4°C for at least 5 months were placed at 15–24°C for 2 wk. PLRV occurred at greater concentration in tubers from plants of cv. Maris Piper with natural or experimentally induced primary infection than in tubers from secondarily infected plants; again PLRV concentration was greater in heel-end than in rose-end vascular tissue. Plants whose shoots were infected earliest in the growing season were invaded systemically and produced the greatest proportion of infected tubers; plants infected late in the season also produced infected tubers but PLRV was not detected in their shoot tops. PLRV concentration in tubers from the earliest-infected plants was less than in tubers from later-infected plants. PLRV was detected reliably by ELISA in tubers from progenies that were totally infected but was not detected in all infected tubers from partially infected progenies. ELISA is suitable as a routine method of indexing tubers for PLRV, although the virus will not be detected in all infected tubers produced by plants to which it is transmitted late in the growing season.  相似文献   

3.
Surveys were made for the presence of potato virus Y (PVY) in the planted seed and harvested tubers in ware potato crops of cv. Record grown at three sites in England in 1994 (survey 1) and seven sites in 1995 (survey 2). PVY was not found in samples of planted seed, but high levels of infection were found in many, but not all, harvested crops. However, plants of volunteer potatoes (VP) (i.e. plants arising from tubers or true seed derived from previous crops and surviving in the soil) were frequently found to be infected. Infection in tubers harvested from crops in the first survey ranged from 2–52%. In 1995, VP were collected from two of the three English sites where potato crops had been grown the previous season and also from a site in Scotland where PVY infection in an experimental crop of cv. Record had been monitored in 1994. The percentages of infected VP ranged from 2–54%. PVYN was the predominant strain found in sampled VP, with only two plants (out of 300 infected) containing PVYO. In the second survey, VP were assessed within the 1995 ware crops and were found at four sites, at which they comprised between 4–8% of emerged potato plants. Between 31–93% of VP were infected. Again, PVYN was the predominant strain with one plant containing PVYO and another PVYC (out of 189 infected). A sample of harvested tubers from each site was also tested for PVY. At those sites which had many infected VP, the harvested crop contained a large percentage of infected tubers, ranging from 60–97%. Two sites which had not previously been used for cropping potatoes had no VP and a very low incidence of PVY infection in the harvested tubers (1% and 2%). However, although no VP were found at one site, 31% of harvested tubers were infected, suggesting that alternative inoculum sources may be important.  相似文献   

4.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

5.
The relationships between rain and blight (Phytophthora infestans) were studied in unsprayed crops of cultivars differing widely in foliage and tuber susceptibility. The occasions when tubers were infected depended on rain and not cultivar, but numbers of tubers infected after rain was affected by the blight susceptibility of the cultivar. Infected tubers were first found when less than 5 % (BMS key) of the potato foliage was infected but few fresh infections occurred when 50–75% of the foliage had been destroyed. Some tubers were infected after 8 mm rain (tubers near the surface with even less) but large increases in numbers of tubers infected usually occurred only after 25 mm or more had increased soil moisture to above ‘field capacity’ around the tuber for at least 24 h. The most susceptible cultivars Ulster Ensign and Arran Banner had all plants with some tuber blight, and some plants with all tubers affected and often many lesions per tuber. Cultivars of intermediate susceptibility, King Edward and Up-to-Date, had some plants without blighted tubers, many with a few and very few with all. The more resistant cultivars Majestic and Arran Viking had many plants without infected tubers and many lesions that aborted while still necrotic threads, so that the fungus did not spread. Most infections occurred through tuber eyes, lenticels or sometimes growth cracks. The distribution of blight lesions on tubers differed in the different seasons, for example, lenticels were most commonly infected on Arran Banner and Ulster Ensign and eyes on King Edward, Majestic and Arran Viking. In late or slowly developing attacks, lesions on stems became more numerous and larger than in fast, early attacks and were prolific sources of spores on King Edward and Up-to-Date but not on Majestic and Arran Viking. Because much rain water runs down the stems of Up-to-Date and King Edward, stem lesions can provide an important source of inoculum for tubers.  相似文献   

6.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

7.
A new defect of potato, Solanum tuberosum L., "zebra chip," so named for the characteristic symptoms that develop in fried chips from infected potato tubers, has recently been documented in several southwestern states of the United States, in Mexico, and in Central America. This defect is causing millions of dollars in losses to both potato producers and processors. Zebra chip plant symptoms resemble those caused by potato purple top and psyllid yellows diseases. Experiments were conducted to elucidate the association between the psyllid Bactericera cockerelli (Sulc) (Homoptera: Psyllidae) and zebra chip by exposing clean potato plants to this insect under greenhouse and field conditions. Potato plants and tubers exhibiting zebra chip symptoms were tested for phytoplasmas by polymerase chain reaction. Potato psyllids collected from infected potato fields also were tested. Results indicated that there was an association between the potato psyllid and zebra chip. Plants exposed to psyllids in the greenhouse and field developed zebra chip. In the greenhouse, 25.8 and 59.2% of tubers exhibited zebra chip symptoms in the raw tubers and fried chips, respectively. In the field, 15 and 57% of tubers showed symptoms in raw tubers and chips, respectively. No zebra chip was observed in tubers from plants that had not been exposed to psyllids, either in the greenhouse or field. No phytoplasmas were detected from potato plants or tubers with zebra chip symptoms, suggesting that these pathogens are not involved in zebra chip. Of the 47 samples of potato psyllids tested, only two tested positive for the Columbia Basin potato purple top phytoplasma.  相似文献   

8.
In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B. cockerelli. Experiments were conducted under laboratory and field conditions to determine the impact of B. cockerelli density on ZC incidence, potato yield, and tuber processing quality. Insect densities ranging from one to 25 liberibacter-infective psyllids per plant were used during the experiments. Results showed that a single adult potato psyllid was capable of inoculating liberibacter to potato and causing ZC disease after a 72-h inoculation access period and was as damaging as 25 psyllids per plant. In addition, ZC-diseased plants showed a sharp reduction in tuber yield but the disease response was independent of the density of psyllids. Furthermore, both glucose and sucrose were found to have highly elevated concentrations in ZC-diseased potato tubers compared with noninfected ones and psyllid density did not vary the response. The high reducing sugar concentrations found in ZC-infected potato tubers are believed to be responsible for browning and reduced quality in processed ZC-infected tubers. This information could help ZC-affected potato producers in making effective management decisions for this serious disease.  相似文献   

9.
To determine the function of cytosolic phosphorylase (Pho2; EC 2.4.1.1), transgenic potato plants were created in which the expression of the enzyme was inhibited by introducing a chimeric gene containing part of the coding region for cytosolic phosphorylase linked in antisense orientation to the 35S CaMV promotor. As revealed by Northern blot analysis and native polyacrylamide gel electrophoresis, the expression of cytosolic phosphorylase was strongly inhibited in both leaves and tubers of the transgenic plants. The transgenic plants propagated from stem cuttings were morphologically indiscernible from the wild-type. However, sprouting of the transgenic potato tubers was significantly altered: compared with the wild-type, transgenic tubers produced 2.4 to 8.1 times more sprouts. When cultivated in the greenhouse, transgenic seed tubers produced two to three times more shoots than the wild-type. Inflorescences appeared earlier in the resulting plants. Many of the transgenic plants flowered two or three times successively. Transgenic plants derived from seed tubers formed 1.6 to 2.4 times as many tubers per plant as untransformed controls. The size and dry matter content of the individual tubers was not noticeably altered. Tuber yield was significantly higher in the transgenic plants. As revealed by carbohydrate determination of freshly harvested and stored tubers, starch and sucrose pools were not noticeably affected by the antisense inhibition of cytosolic phosphorylase; however, glucose and fructose levels were markedly reduced after prolonged storage. These results favour the view that cytosolic phosphorylase does not participate in starch degradation. The possible links between the reduced levels of cytosolic phosphorylase and the observed changes with respect to sprouting and flowering are discussed.  相似文献   

10.
Seed tubers of cvs Désirée and Pentland Crown with different severities of black dot were planted in 1988 and 1989 at Rothamsted in fields in 4– or 7-course rotations, respectively. Tubers treated with prochloraz (1988) or imazalil (1989) were planted in some plots, and in others Colletotrichum coccodes inoculum was added to the soil at planting. In further experiments at Mepal, Cambridgeshire in 1989 and 1990 and at Rothamsted in 1990 on sites where potatoes had not been grown for more than 15 years, large amounts of inoculum were added to the soil around disease-free seed tubers of two (1989) or three (1990) cultivars at planting. In all experiments plants were sampled during the season and the effects of treatments on disease development, growth and yield were recorded. Disease on roots, stem bases and tubers was found early in the season and was more severe on Désirée than on Pentland Crown plants from fields in 4– or 7-course rotations. Severity increased throughout the season and with increasing amounts of disease on the seed tubers, especially with Desiree. Disease was also found on plants from disease-free tubers and was more severe in 1988 than 1989. At harvest, black dot on tubers was significantly more severe from severely affected than from disease-free seed, and was most severe where inoculum, especially large amounts, had been added at planting. Fungicide treatment decreased disease early in the season but had no effect on tuber infection at harvest. In 1989 the weight loss of seed tubers during sprouting increased with increasing amounts of black dot, but the disease had little effect on plant size through the season. At harvest the yield of ware tubers (>50 mm) decreased with severe disease but total tuber yields were not significantly affected. However, at harvest in 1988 severely affected seed yielded significantly less than healthy seed. Plants grown from mini-tubers were free from disease on sites where potatoes had not been grown for at least 15 years. Inoculum applied at planting caused severe disease on all cultivars in both years, whereas disease was slight on uninoculated plants. Inoculated plants senesced early at Mepal in 1990, but there were no significant differences in total tuber yield in any experiment. However, yields of ware tubers (>50 mm) were sometimes decreased and the total tuber number per plant increased.  相似文献   

11.
The potential importance of the beet ringspot strain of tomato black-ring, a soil-borne virus, was assessed by growing stocks of Kerr's Pink potato for 1 year on infested land and subsequently on uninfested land. The incidence of infection in two stocks was 39 and 8% in the first year on uninfested land, and 29 and 5% after 2 years.
The virus was usually restricted to the roots of plants in the first year of infection, but a few plants showed black rings and spots in their leaves. In the second year, 20–55% of the plants grown from tubers set by symptomless, but infected, mother plants were infected: many of these showed leaf necrosis, others had stunted shoots, and cupped and distorted leaves; some were symptomless although systemically infected. In the third and fourth years, most of the progeny from plants which had symptoms or which were symptomless but systemically infected, contained the virus: nearly all such infected plants were stunted and distorted or were symptomless. Infection decreased the weight of tubers produced by plants with severe necrotic spotting but not the yield of plants with less necrosis. The number and weight of tubers per plant were decreased by 15 and 20% respectively, in symptomless systemically infected plants, and by 20 and 30% in stunted plants.  相似文献   

12.
Experiments with bacterial wilt (Pseudomonas solanacearum) race 3 showed that the practice of intercropping potato with maize or haricot beans markedly reduced the incidence and rate of disease development in the potato crop. This reduction in disease was considered to be an effect of the increased distances between individual potato plants, their spatial arrangement and the presence between potato plants of root systems of other plant species, all of which resulted in a reduction in plant-to-plant transmission, via the roots. The lower potato plant population associated with intercropping resulted in a slower rate of inoculum build-up in the soil and the presence of an intercrop further markedly reduced the inoculum build-up. Where farmers retain tubers for seed, but where roguing of diseased plants is not practised, the isolation of plants through intercropping was considered to facilitate an efficient selection of healthy tubers.  相似文献   

13.
The feeding behaviour of potato tuber moth, Phthorimaea operculella Zeller (Lep., Gelechiidae), reared on leaves and tubers of potato plants, which were irradiated as seed (tubers) with stimulation doses of gamma irradiation (1, 3, 5 and 10 Gy), was studied. Significant differences in the larvae and pupae developmental time, pupal weight, mortality, fecundity and percentage egg hatch, were observed between insects fed on plants which resulted from the irradiated seeds and those of the control. It appears that leaves of potato plants grown from irradiated seeds particularly those of 3 Gy, became more attractive to the larvae, although the resulting tubers, with the exception of those of 10 Gy, became more resistant to potato tuber moth. Storing the tubers at ambient temperature conditions affected the degree of larval sensitivity. The leaves and tubers of 10 Gy-irradiated seeds became more suitable for insect development, indicating that the later dose may inhibit the production of secondary plant metabolities and chemical compounds.  相似文献   

14.
In this study, the compositions of transgenic potatoes (TPs) resistant to potato tuber moth (Phthorimaea operculella) were compared with those of its non-transgenic (NTP) counterparts. The light inducible promoter, phosphoenolpyruvate carboxylase led to the expression of Cry1Ab only in the leaves and light-treated tubers of the TPs. No significant differences were found in the moisture, ash, dry weight, total soluble protein, carbohydrate, starch, fiber, ascorbate, cations, anions, fatty acids, and glycoalkaloids contents of TP and NTP. Moreover, light treatment significantly affected the contents of ascorbate, acetate and nitrite anions, palmitic, stearic and linolenic fatty acids, α-haconine and α-solanine glycoalkaloids in TP and NTP tubers. While, significant differences were observed in the amino acid contents in light-treated tubers of TPs than the NTP ones. Although, light treatment in potato tubers resulted in marked metabolic changes, all the variations observed in the metabolites compositions were found to be within the desired reference ranges for potato plants. In conclusion, the results indicated that the TPs were substantially and nutritionally equivalent to the NTP counterparts.  相似文献   

15.
The diversification of resistant potato varieties at a landscape level could slow adaptation by Phthorimaea operculella to potato resistance and promote sustainable crop protection. In this study, we assessed wild potato species as novel sources of foliage and tuber resistance against P. operculella. Tuber resistance was quantified for 136 and foliage resistance for 54 potato accessions representing 14 and nine potato species, respectively. Several accessions were highly resistant to moth damage in tubers and/or foliage. In particular, Solanum chiquidenum and Solanum sandemanii were highly resistant to damage in tubers. Several accessions of Solanum multiinterruptum and a small number of accessions of Solanum bukasovii, Solanum berthaultii, Solanum sparsipilum and Solanum wittmackii also had highly resistant tubers. Larval survival on foliage of S. bukasovii and S. chiquidenum was generally low. New resistance sources are listed, and insect performance on the plants is described with possible resistance mechanisms. The study also examined potential trade‐offs associated with resistance. Tuber resistance was negatively correlated with the number and weight of tubers produced per plant, but positively correlated with the length of dormancy across accessions, indicating that, although long dormancy is not a prerequisite for resistance, species and accessions with extended dormancy will have more resistant tubers. Tuber and foliage resistance were generally positively correlated across all accessions; however, among accessions from within a potato species, there were negative (S. berthaultii), positive (S. chiquidenum) and non‐significant (S. bukasovii) relations. These results indicate that, besides identifying novel resistance sources, an improved understanding of the mechanisms and inherent trade‐offs associated with tuber and foliage resistance will improve the efficiency of potato breeding programmes aimed at enhancing resistance against P. operculella.  相似文献   

16.
Transgenic potato, Solanum tuberosum L., plants containing a synthetic cry1Ac gene coding for the Bacillus thuringiensis (Bt) crystalline insecticidal protein were produced and evaluated for resistance to Tecia solanivora Povolny (Lepidoptera: Gelechiidae), the larvae of which attack potato tubers. In total, 43 transgenic lines of commercial Andean potato varieties Diacol Capiro, Pardo Pastusa, and Pandeazúcar were obtained. These transgenic lines were found to have one to four copies of cry1Ac per genome and expression levels of Cry1Ac protein varying from 0.02 to 17 microg/g fresh tuber tissue. Bioassays of T. solanivora larvae on these transgenic potato tubers showed 83.7-100% mortality, whereas the mortality levels on nontransgenic lines were 0-2.67%. Our data indicate the capability of Bt transgenic technology to control the T. solanivora while reducing the use of chemical insecticides. Further studies under controlled field conditions will be helpful in exploring the potential of CrylAc potatoes in the insect pest management strategies.  相似文献   

17.
Experiments were made at Invergowrie in 1984 and 1985 to compare the spread of potato leafroll virus (PLRV) after removing infected plants by three different methods; conventional roguing, desiccation with diquat, or incineration for 45–60s using a propane gas flame. Potato leaf roll 'infector' plants, grown in plots of virus-free Maris Piper seed potatoes, were artificially infested in June with aphids (Myzus persicae) from a laboratory culture, and removed from the plots after 2 or 3 wk. In both years, natural infestations of potato aphids were scarce during this period. There was no significant difference in the proportion of tubers infected with PLRV in adjacent plants after the neighbouring infector plants had been rogued by hand or desiccated with diquat, but the proportion was considerably reduced following incineration of the infector plants. In 1984, the spread of PLRV in conventionally rogued plots was also significantly reduced by a mixture of deltamethrin plus heptenophos, applied four times from 80% crop emergence, and was almost eliminated by a treatment with aldicarb granules, either at planting, or as a side-dressing 5 wk later. In 1985, delaying infector removal by 8 days in early July significantly increased the spread of PLRV to neighbouring plants from 2.3% (1 July) to 8.3% (9 July). A single application of deltamethrin plus heptenophos to infectors 1 wk before removal did not significantly decrease spread. Although incineration was quick and effective, the value of this method of eradicating infector plants in seed potato crops is limited because it failed to destroy infected tubers.  相似文献   

18.
Identification of superior parents in a potato breeding programme   总被引:6,自引:0,他引:6  
Summary An incomplete diallel cross was used to study components of genetic variation in potatoes for a range of characters after early and late harvest. The progenies were also used to evaluate five predictors of progeny performance, namely the mean seedling performance, the mid-parent value and the means of the selfed progenies, of the diploid progenies and of the test-cross progenies. For almost all characters, the general combining ability effects were predominant, although the specific combining ability effects present were greater at late than at early harvests. The seedling performance for tuber yield, number of tubers and average tuber weight did not show any relevant relationship to the field performance. The midparent value provided, in general, satisfactory predictions of the mean progeny performance obtained in the diallel, except for ware tuber yield. The selfed and the diploid progenies did not improve the prediction of progeny means compared to the mid-parent value. The predictions based on the test-crosses surpassed those of the mid-parent value, particularly for tuber yield at ware potato harvest. Methods to identify superior parents are discussed.  相似文献   

19.
Liquid suspensions and dry formulations of a granulovirus (family Baculoviridae, genus Granulovirus, PoGV) derived from infected larvae and the bacterium Bacillus thuringiensis subsp. kurstaki (Berliner) (Btk) were evaluated for control of the potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in stored tubers. Laboratory bioassays at 25 degrees C showed that both PoGV and a wettable powder (WP) formulation of Btk incorporated with carriers (water, talc, sand, diatomaceous earth, and kaolin clay), were effective against neonate larvae. Depending on the technique, 100% larval mortality was achieved at concentrations as low as 0.025 larval equivalents (LE) PoGV per kg tuber and 150 mg Btk WP per kg tuber. However, 100% mortality was never achieved with tests on preinfested tubers, ostensibly due to the higher dosage required to kill older instars inside tubers. The most effective PoGV formulations were dipping (water) and talc, with dipping most effective for postinfestation treatments, causing up to 91.6% mortality at 0.4 LE per kg. There was no significant effect of formulation in the Btk treatments. The protective effects of residues were also evaluated under longer-term storage conditions. Batches of tubers treated with PoGV or Btk via dipping (up to 0.1 LE and 150 mg WP per kg tuber) were stored in cages containing an initial potato tuberworm infestation (10% of tubers). Although potato tuberworm populations were reduced by up to 98.4% after 2 mo at 25 degrees C, no treatments prevented the development and reproduction of the F1 generation. The sprouting of stored tubers seemed to be a limiting factor for sustained control. No significant treatment effects were detected in similar cages held at 12 degrees C for 4.5 mo. Improved strategies for the application of PoGV and Btk for long-term potato tuberworm control in tuber stores, including the use of chemical sprout suppressants, are discussed.  相似文献   

20.
The effects of infection with potato leafroll virus (PLRV) on the four crop processes leading to tuber fresh weight yield were examined in field plots of four cultivars (Montana, Pentland Crown, Maris Piper and King Edward) differing in tolerance to infection. Averaged across cultivars, infection decreased yield by 50%. This decrease was equally due to less light (total solar radiation) being intercepted, a lower efficiency with which intercepted light was converted into dry weight, and a smaller proportion of dry weight being partitioned to tubers. Dry matter content of the tubers was also diminished but to a lesser extent. The main difference between the cultivars in their response to infection was in the partitioning of dry weight. In Montana and Pentland Crown, harvest index was decreased by 15% in infected plants, whereas in the less tolerant cultivars, Maris Piper and King Edward, it was decreased by 25%. The decline in photosynthetic performance of Montana, a cultivar with slightly earlier maturity than the other three, was delayed in PLRV-infected plants. Effects on number of daughter tubers essentially reflected those on yield to the extent that average tuber weight did not change in Maris Piper, was one third less in King Edward, and the change was intermediate in Montana and Pentland Crown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号