首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
2.
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1(-/-) palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.  相似文献   

3.
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.  相似文献   

4.
5.
Members of the Drosophila Iroquois homeobox gene family are implicated in the development of peripheral nervous system and the regionalization of wing and eye imaginal discs. Recent studies suggest that Xenopus Iroquois homeobox (Irx) genes are also involved in neurogenesis. Three mouse Irx genes, Irx1, Irx2 and Irx3, have been previously identified and are expressed with distinct spatio-temporal patterns during neurogenesis. We report here the cloning and expression analysis of two novel mouse Irx genes, Irx5 and Irx6. Although Irx5 and Irx6 proteins are structurally more related to one another, we find that Irx5 displays a developmental expression pattern strikingly similar to that of Irx3, whereas Irx6 expression resembles that of Irx1. Consistent with the notion that Mash1 is a putative target gene of the Irx proteins, all four Irx genes display an overlapping expression pattern with Mash1 in the developing CNS. In contrast, the Irx genes and Mash1 are expressed in complementary domains in the developing eye and olfactory epithelium.  相似文献   

6.
7.
8.
Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1(Tw)). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1(ΔEx1), is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1(ΔEx1) ears confirm that Zeb1(ΔEx1) is a null allele, whereas Zeb1(Tw) RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1(Tw) expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance.  相似文献   

9.
10.
11.
12.
T-box genes constitute a conserved gene family with important roles in many developmental processes. Several family members have been implicated in human congenital diseases. Recently, mutations in TBX22 were found to cause X-linked cleft palate (CPX and ankyloglossia), a semidominant X-linked disorder affecting formation of the secondary palate. Here, we have cloned the chick ortholog of human TBX22 and have analyzed its expression during embryogenesis. Expression is very prominent in the somites and in the myotome, and in the mandible and maxilla of the developing jaw. Other sites of expression include the limbs, the cranial mesenchyme and the eye. Hence, Tbx22 expression domains encompass the regions important for the development of the disease phenotype.  相似文献   

13.
Temporal and Spatial Expression of Hoxa-2 During Murine Palatogenesis   总被引:2,自引:0,他引:2  
1. Mice homozygous for a targeted mutation of the Hoxa-2 gene are born with a bilateral cleft of the secondary palate associated with multiple head and cranial anomalies and these animals die within 24 hr of birth (Gendron-Maguire et al., 1993; Rijli et al., 1993; Mallo and Gridley, 1996). We have determined the spatial and temporal expression of the Hoxa-2 homeobox protein in the developing mouse palate at embryonic stages E12, E13, E13.5, E14, E14.5, and E15.2. Hoxa-2 is expressed in the mesenchyme and epithelial cells of the palate at E12, but is progressively restricted to the tips of the growing palatal shelves at E13.3. By the E13.5 stage of development, Hoxa-2 protein was found to be expressed throughout the palatal shelf. These observations correlate with palatal shelf orientation and Hoxa-2 protein may play a direct or indirect role in guiding the palatal shelves vertically along side the tongue, starting with the tips of the palatal shelves at E13, followed by the entire palatal shelf at E13.5.4. As development progresses to E14, the stage at which shelf elevation occurs, Hoxa-2 protein is downregulated in the palatal mesenchyme but remains in the medial edge epithelium. Expression of Hoxa-2 continues in the medial edge epithelium until the fusion of opposing palatal shelves.5. By the E15 stage of development, Hoxa-2 is downregulated in the palate and expression is localized in the nasal and oral epithelia.6. In an animal model of phenytoin-induced cleft palate, we report that Hoxa-2 mRNA and protein expression were significantly decreased, implicating a possible functional role of the Hoxa-2 gene in the development of phenytoin-induced cleft palate.7. A recent report by Barrow and Capecchi (1999), has illustrated the importance of tongue posture during palatal shelf closure in Hoxa-2 mutant mice. This along with our new findings of the expression of the Hoxa-2 protein during palatogenesis has shed some light on the putative role of this gene in palate development.  相似文献   

14.
15.
Microtia, a congenital deformity manifesting as an abnormally shaped or absent external ear, occurs in one out of 8,000-10,000 births. We ascertained a consanguineous Iranian family segregating with autosomal-recessive bilateral microtia, mixed symmetrical severe to profound hearing impairment, and partial cleft palate. Genome-wide linkage analysis localized the responsible gene to chromosome 7p14.3-p15.3 with a maximum multi-point LOD score of 4.17. In this region, homeobox genes from the HOXA cluster were the most interesting candidates. Subsequent DNA sequence analysis of the HOXA1 and HOXA2 homeobox genes from the candidate region identified an interesting HOXA2 homeodomain variant: a change in a highly conserved amino acid (p.Q186K). The variant was not found in 231 Iranian and 109 Belgian control samples. The critical contribution of HoxA2 for auditory-system development has already been shown in mouse models. We built a homology model to predict the effect of this mutation on the structure and DNA-binding activity of the homeodomain by using the program Modeler 8v2. In the model of the mutant homeodomain, the position of the mutant lysine side chain is consistently farther away from a nearby phosphate group; this altered position results in the loss of a hydrogen bond and affects the DNA-binding activity.  相似文献   

16.
The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates.  相似文献   

17.
Several dysmorphic syndromes affect the development of both the eye and the ear, but only a few are restricted to the eye and the external ear. We describe a developmental defect affecting the eye and the external ear in three members of a consanguineous family. This syndrome is characterized by ophthalmic anomalies (microcornea, microphthalmia, anterior-segment dysgenesis, cataract, coloboma of various parts of the eye, abnormalities of the retinal pigment epithelium, and rod-cone dystrophy) and a particular cleft ear lobule. Linkage analysis and mutation screening revealed in the first exon of the NKX5-3 gene a homozygous 26 nucleotide deletion, generating a truncating protein that lacked the complete homeodomain. Morpholino knockdown expression of the zebrafish nkx5-3 induced microphthalmia and disorganization of the developing retina, thus confirming that this gene represents an additional member implicated in axial patterning of the retina.  相似文献   

18.
The inner ear is a complex sensorial structure with hearing and balance functions. A key aim of developmental biology is to understand the molecular and cellular mechanisms involved in the induction, patterning and innervation of the vertebrate inner ear. These developmental events could be mediated by the expression of regulating genes, such as the members of the family of Fibroblast Growth Factors (Fgfs). This work reports the detailed spatial and temporal patterns of Fgf19 expression in the developing inner ear from otic cup (stage 14) to 8 embryonic days (stage 34). In the earliest stages, Fgf19 and Fgf8 expressions determine two subdomains within the Fgf10-positive proneural-sensory territory. We show that, from the earliest stages, the Fgf19 expression was detected in the acoustic-vestibular ganglion and the macula utriculi. The Fgf19 gene was also strongly, but transiently, expressed in the macula lagena, whereas the macula neglecta never expressed this gene in the period analysed. The Fgf19 expression was also clearly observed in some borders of various sensory elements. These results could be useful from further investigations into the role of FGF19 in otic patterning.  相似文献   

19.
We have isolated a five-member gene subfamily which encodes cruciferin, a legumin-like 12S storage protein of Brassica napus L., and have analyzed the structure and expression of the family members in developing embryos. Sequence analysis has shown that the coding regions of all five genes are highly similar, with the two most divergent members of the family retaining 89% sequence identity. The analysis of this cruciferin gene family's expression indicates that the developmental pattern of expression of each gene is similar, and the steady-state mRNA levels of each gene are approximately equivalent to each other at all developmental stages.  相似文献   

20.
Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号