首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 本文报告膜蛋白溶脱剂溶脱大鼠脑M胆碱受体的结果,其中0.5%CHAPS,0.35%洋地黄皂苷和10%甘油的混合液效果较好,可溶脱30%的受体,并得到22%有活性的受体。溶脱的受体有较好的稳定性,与膜结合受体有同样的配体结合特异性,可饱和性及可逆性。平衡结合及动力学研究表明溶脱受体和膜结合受体对[~3H]QNB有类似的亲和性。  相似文献   

2.
We have developed a radioiodinated photoaffinity label, N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys-N-6-(4'-azido-2'-nitrophenylamino) hexanoate (where Nle represents norleucine) (125I-PAL), which forms a covalent complex with the formyl peptide chemotactic receptor of living human neutrophils. Labeling was 12 to 16% efficient and did not alter cell viability. The receptor on live neutrophils and neutrophil membranes has an apparent molecular weight of 50,000 to 70,000 by sodium dodecyl sulfate-polyacrylamide electrophoresis. The receptor on intact cells possesses one predominant papain cleavage site, yielding a 35,000-Da fragment. This receptor fragment retains an affinity for N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys indistinguishable from the receptor on control cells (KD = 1.9 and 1.8 nM, respectively). The 35,000-Da papain fragment was biologically active as evidenced by an unchanged dose-response curve for peptide-stimulated beta-glucuronidase release and fluorescent peptide uptake. Papain treatment of 125I-PAL-labeled neutrophil membranes or of digitonin-soluble 125I-PAL-labeled receptors produced a predominant 28,000-Da fragment without evidence of the 35,000-Da fragment seen with whole cells. Pronase, which did not cleave the receptor on intact cells, produced multiple receptor fragments when used to treat 125I-PAL-labeled membranes.  相似文献   

3.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

4.
The neuropeptide Y (NPY) receptor was solubilized from rat brain membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The binding of 125I-NPY to CHAPS extracts was protein, time, and temperature dependent. Unlabeled NPY and the related peptides peptide YY (PYY) and pancreatic polypeptide inhibited 125I-NPY binding to solubilized receptors with relative potencies similar to those seen with membrane-bound receptors: NPY greater than PYY much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data showed the CHAPS extracts to contain a single population of binding sites with a KD of 3.6 +/- 0.4 nM (mean +/- SEM) and a Bmax of 5.0 +/- 0.2 pmol/mg of protein. In addition the 125I-NPY binding to the soluble receptor was not inhibited by guanosine-5'-O-(3-thiotriphosphate), in contrast to the GTP sensitivity displayed by the membrane-bound receptor. Gel filtration chromatography using Sepharose 6B revealed a single peak of binding activity corresponding to a Mr of approximately 67,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis after chemical cross-linking revealed a single band at Mr 62,000. After solubilization and gel chromatography a 50- to 100-fold purification of the NPY receptor was obtained.  相似文献   

5.
The present study demonstrates for the first time the solubilization of peripheral-type benzodiazepine binding sites (PBS) from cat cerebral cortex. Of all detergents tested [digitonin, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholate, and Triton X-100] in the presence of NaCl, the best solubilization (15% of initial activity) was obtained using 0.5% of the zwitterionic detergent CHAPS plus 2 M NaCl. Specific binding of [3H]PK 11195 to membrane-bound and solubilized PBS was saturable, yielding equilibrium dissociation constants (KD) of 1.3 +/- 0.2 and 1.9 +/- 0.3 nM, respectively, and maximal numbers of binding sites of 1,435 +/- 150 and 980 +/- 126 fmol/mg protein, respectively. The KD value of PK 11195 binding to solubilized PBS obtained from experimental kinetic analysis was 0.95 +/- 0.09 nM. The relative potencies of various compounds (PK 11195, Ro 5-4864, diazepam, flunitrazepam, clonazepam, methyl-beta-carboline-3-carboxylate, and Ro 15-1788) in displacing [3H]PK 11195 specific binding from membrane-bound and solubilized PBS were similar. Most of the solubilized binding activity was destroyed by heating at 60 degrees C for 30 min or by treatment with 2 M guanidinium chloride, which indicates the presence of a protein-binding site in the solubilized preparation. Over 85% of the solubilized binding activity was retained after 1 week at 4 degrees C, which will enable future application of purification procedures without major concern for stability of the material.  相似文献   

6.
Detergent solubilization of the interleukin 1 receptor   总被引:5,自引:0,他引:5  
Interleukin 1 (IL 1) receptors were solubilized from membranes prepared from murine EL-4 thymoma cells with the zwitterionic detergent 3[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Binding of IL 1 to the solubilized receptor was detected by a polyethylene glycol (PEG) precipitation procedure. Concentrations of CHAPS from 4 to 8 mM were effective in solubilizing the IL 1 receptor. At 10 mM CHAPS, there was some loss in binding activity, whereas 2 mM CHAPS was completely ineffective in solubilizing the receptor. Detergent concentrations of 4 mM were routinely used. The solubilized receptor retains the ability to bind 125I-IL 1 in a specific and saturable manner. Scatchard analysis reveals a single type of high affinity binding site having an apparent dissociation constant (KD) of approximately 1.2 X 10(-10) M. Nearly identical KD values are observed for membrane fractions. There are approximately 400 to 500 fmol receptor/mg protein in the detergent extract, corresponding to a two- to threefold enrichment in the Bmax observed for membranes. There is no loss in receptor activity as determined by complete recovery of the total number of binding sites from membranes after solubilization. Binding kinetics show that apparent steady state for the solubilized receptor is reached after 60 min at 37 degrees C. The binding of 125I-IL 1 is essentially irreversible because relatively little bound ligand can be dissociated from the receptor on the addition of excess unlabeled IL 1 at 37 degrees C. Both human IL 1 alpha and IL 1 beta compete for binding of 125I-IL 1 to the soluble receptor, confirming that IL 1 alpha and IL 1 beta bind to the same receptor. Other recombinant proteins, including interferon-alpha A, interferon-gamma, and interleukin 2 have no inhibitory effect.  相似文献   

7.
Digitonin was found to be the only detergent (out of 24 tested) capable of solubilising the chemotactic formyl peptide receptor from rabbit neutrophil membranes in a form which retained its [3H]fMet-Leu-Phe binding activity. The solubilised material retained many of the characteristics of the membrane-bound receptor. [3H]fMet-Leu-Phe binding to the digitonin extract was measured at 4 degrees C using an equilibrium dialysis assay. Binding was saturable and of high affinity (Kd = 3.5 +/- 0.7 nM). The potencies of a series of synthetic peptides as inhibitors of [3H]fMet-Leu-Phe binding to the soluble receptor showed the same rank order as for inhibition of the membrane-bound receptor. In addition, binding to both preparations was sulphydryl dependent showing a parallel inhibition by p-chloromercuribenzene sulphonate which could be partially reversed by subsequent incubation with dithiothreitol.  相似文献   

8.
L Y Li  Z M Zhang  Y F Su  W D Watkins  K J Chang 《Life sciences》1992,51(15):1177-1185
Opioid receptor was solubilized from rat brain membranes with a mixture of the detergents CHAPS and digitonin in the presence of protease inhibitors and 1 M NaCl. The solubilized receptor bound mu-opioid agonists and antagonists with affinities similar to those of native membrane receptor. The affinity of solubilized receptor for the agonist PL017 was greatly reduced by GTP gamma S, suggesting the receptor is still associated with G-protein. The solubilized material was passed through an opioid antagonist (10cd) affinity column and a wheat germ agglutinin column, set up in series, to obtain a partially purified receptor preparation. This partially purified material bound mu-agonist with low affinity and the binding affinity was no longer affected by GTP gamma S. The partially purified receptor was further purified by repeating the affinity and lectin chromatography with smaller size column. Binding of opioid antagonist [3H]diprenorphine to the partially or purified receptors was dependent upon the presence of sodium ions. The purified receptor showed saturable and stereospecific binding for opioid ligands, was predominantly of the mu-type, and exhibited as a diffuse band with a medium molecular mass of 62 kD upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The average specific binding activity of the purified receptor was 18.8 +/- 2.3 pmol/micrograms protein, a value close to the theoretical estimation.  相似文献   

9.
Active neuropeptide Y receptors were solubilized from rabbit kidney membranes using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). In membrane fragments and soluble extracts neuropeptide Y binding was time dependent, saturable, reversible, and of high affinity. Scatchard analysis of equilibrium binding data indicated a single class of binding sites with respective KD and Bmax values of 0.09 nM and 530 fmol/mg of protein for the membrane-bound receptors and 0.10 nM and 1585 fmol/mg of protein for the soluble receptors. Neuropeptide Y binding was specifically inhibited by the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) in a concentration-dependent manner, with IC50 values of 28 and 0.14 microM for membrane-bound and soluble receptors, respectively, suggesting that neuropeptide Y receptors are functionally coupled to GTP-binding regulatory proteins. Cross-linking studies were performed with the heterobifunctional N-hydroxysuccinimidyl-4-azidobenzoate and the monofunctional neuropeptide Y derivative, azidobenzoyl and led to the identification of a 100 kDa peptide that should represent the covalently labeled neuropeptide Y receptor.  相似文献   

10.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 +/- 0.3 nM and a Bmax of 1.20 +/- 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP greater than helodermin greater than rat GRF greater than rat PHI greater than secretin greater than human GRF. GTP inhibited 125I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insentive, G protein-free form. This represents a major advance towards the purification of VIP receptors.  相似文献   

11.
The sex steroid-binding protein (SBP) receptor was solubilized from the membranes of human premenopausal endometrium with the zwitterionic detergent CHAPS. The binding activity of the soluble receptor was studied, allowing it to interact with [125I]SBP and precipitating the complex with polyethylene glycol 8,000. The interaction of SBP with the soluble receptor was specific, saturable, and at high affinity. Indeed, the specific binding was definitely improved on the solubilized form of the receptor. The effect exerted by sex steroids on the interaction of SBP with receptor was also examined on both the soluble and membrane-bound forms. At physiologic doses (10(-8) M) estradiol inhibits the binding at a significant extent on the soluble receptor, but not on membrane-bound form. The dose of estradiol required to significantly inhibit the SBP-specific binding was dependent on the form of receptor. In membrane-bound receptor the inhibiting dose of estradiol was higher than its physiologic concentration. Thus, it is likely that, while soluble receptor cannot recognize the complex steroid-SBP, membrane-bound receptor can interact both with "unliganded" SBP and with the estradiol-SBP complex (but not with androgen-SBP complexes) in an estrogen-dependent tissue like human endometrium.  相似文献   

12.
The formyl peptide chemotactic receptor has been solubilized by digitonin treatment of purified human neutrophil membranes. Of several potential assay methods tested for their ability to separate receptor-bound from free ligand, only gel filtration through an acrylamide cross-linked agarose matrix yielded satisfactory results. Approximately 70% of the receptor initially present in the membrane was recovered in the digitonin extract. Binding of 125I-labeled N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys to the soluble receptor was rapid (t 1/2 at 22 degrees C less than 5 min), of high affinity (Kd = 2.2 nM) and saturable. The relative potencies of a small series of peptides as inhibitors of binding to the soluble receptor paralleled their potencies as inhibitors of the membrane-bound receptor. N-Formylation of the peptides was required for high affinity binding. Binding was maximal at pH 6.5 and was sulfhydryl-dependent; 20 microM p-chloromercuriphenylsulfonic acid decreased binding by 50%. 125I-labeled N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys was specifically cross-linked to the soluble receptor with ethylene glycol bis(succinimidyl succinate) and an apparent molecular weight of 55,000 to 70,000 and determined for the soluble receptor by sodium dodecyl sulfate polyacrylamide gel electrophoresis. A strategy for obtaining an active, detergent-soluble receptor preparation based on covalent affinity labeling is presented.  相似文献   

13.
We previously reported that muscarinic acetylcholine receptors (mAChRs) from porcine brains are glycoproteins. When porcine brain membranes were solubilized with digitonin or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), approximately 20% of the receptors were solubilized, most (90% or more) of which bound to Sepharose 4B conjugated with wheat germ agglutinin (WGA). In contrast, when membranes were solubilized with Lubrol PX, a much larger fraction (approximately 60%) of the receptors were solubilized. However, about a third of this solubilized receptor population remained unbound to WGA-Sepharose even in the presence of an excess amount of the lectin-Sepharose. These results suggested a structural heterogeneity of the mAChR in terms of its carbohydrate moiety. The effects of lectins on the ligand binding properties of mAChRs were also studied. WGA or concanavalin A (ConA) was found to cause a 2- to 3-fold increase in the affinity of membrane-bound receptors to an antagonist [3H]quinuclidinyl benzylate [( 3H]QNB) without affecting the maximum number of sites, whereas the lectins had no significant effects on the binding of the agonist [3H]cis-methyldioxolane. When the membranes were dissolved with detergents, lectin did not increase the [3H]QNB affinity: These lectins caused an approximately 2 fold decrease in the affinity of digitonin-solubilized receptors for [3H]QNB. Thus the lectins exert differential effects on agonist and antagonist binding to the brain membrane mAChRs, most likely by modulating some intermolecular interactions.  相似文献   

14.
Opioid receptors were solubilized from bovine striatal membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate-(CHAPS). High concentrations of NaCl (0.5-1.0 M) were necessary to ensure optimal yields, which ranged from 40 to 50% of membrane-bound receptors. This requirement was found to be specific for sodium, with only lithium able to substitute partially, as previously reported for solubilization with digitonin. Opioid antagonists, but not agonists, were able to bind to soluble receptors with high affinity. High-affinity binding of mu, delta, and kappa agonists was reconstituted following polyethylene glycol precipitation and resuspension of CHAPS extract. Evidence is presented suggesting that this is the result of inclusion of receptors in liposomes. Competition and saturation studies indicate that the three opioid receptor types retain their selectivity and that they exist in the reconstituted CHAPS extract in a ratio (50:15:35) identical to that in the membranes. In reconstituted CHAPS extract, as in membranes, mu-agonist binding was found to be coupled to a guanine nucleotide binding protein (G protein), as demonstrated by the sensitivity of [3H][D-Ala2,N-methyl-Phe4,Gly5-ol]-enkephalin ([3H]DAGO) binding to guanosine 5'-O-(thiotriphosphate) (GTP gamma S). In the reconstituted CHAPS extract, complete and irreversible uncoupling by GTP gamma S was observed, whereas membrane-bound receptors were uncoupled only partially. Treatment with GTP gamma S, at concentrations that uncoupled the mu receptors almost completely, resulted in a fourfold decrease in the Bmax of [3H]DAGO binding with a relatively small change in the KD. Competition experiments showed that the Ki of DAGO against [3H]bremazocine was increased 200-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
CHAPS [3-(3-cholamidylpropyl)-dimethylammonio-1-propanesulfonate], a zwitterionic detergent, has been used to solubilize the rat hepatic alpha 1-adrenergic receptor. Although the use of this detergent alone permitted a poor receptor solubilization, the inclusion of sodium phosphate, sodium chloride, and glycerol to the medium allowed 30% of the binding activity observed in plasma membranes to be recovered. Binding of the selective alpha 1-adrenergic antagonist, [3H]prazosin, by the solubilized preparation was saturable and of high affinity. In addition, binding of the radioligand was inhibited by a variety of adrenergic agents with affinity, specificity, and stereoselectivity comparable to that observed in plasma membranes. The use of glycerol in the solubilization medium permitted recovery of the solubilized receptor in a stable form (T1/2 = 72 h at 4 degrees C). Sequential affinity and size-exclusion gel chromatography allowed a 1000-fold purification of the solubilized receptor. The Stokes' radius and the apparent molecular mass of the purified receptor-Chaps complex (48.4 A and 160,000 Da, respectively), determined by gel filtration chromatography, were similar to those previously obtained for the rat hepatic alpha 1-receptor purified after solubilization with the nonionic detergent digitonin. These data indicate that the combination of Chaps, sodium phosphate, sodium chloride, and glycerol permitted the solubilization and partial purification of hepatic alpha 1-receptor in an active and stable form. The use of this technique might be useful for the solubilization of other membrane-bound proteins by Chaps whose biophysical characteristics make it an ideal detergent for reconstitution experiments.  相似文献   

16.
Active B2 bradykinin (BK) receptors were solubilized in high yields from intact monolayers or particulate fractions of cultured human foreskin fibroblasts using 4 mM of the non-denaturing zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). Other detergents showed only minor (digitonin) or no (Triton X-100, n-octyl glucopyranosid) efficacy at all. The stability of CHAPS-solubilized BK binding activity was temperature dependent being reduced to 30% of initial binding after 3 days of storage at 4 degrees C. CHAPS extracts, however, retained BK binding activity for at least several days when they were stored at -20 degrees C in the presence of 10% glycerol. The pharmacological characterization gave a rank order of potency for unlabeled BK, BK agonists, and antagonists to compete with [3H]BK for specific binding very similar to that observed in intact fibroblasts. Association and dissociation kinetics demonstrated that the binding of [3H]BK to the soluble CHAPS extracts was time dependent and reversible. Scatchard analysis of equilibrium binding data exhibited saturable binding of a single class of high affinity BK-binding sites with a Kd of 1.68 +/- 0.8 nM. Gel filtration revealed an apparent molecular weight of 250,000 for the solubilized BK receptor complex in CHAPS extracts. The ability to solubilize the B2 BK receptor in an active and stable form should allow for its future purification and for the characterization of its chemical properties.  相似文献   

17.
Binding of 2-[125I]iodomelatonin to 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS)-solubilized sites from chick forebrain was rapid. reversible, saturable, of high affinity, and of pharmacological selectivity. Scatchard analyses showed that 2-[125I]iodomelatonin binds to a single site with equilibrium dissociation constant (KD) values of 328 +/- 22 (n = 4) and 302 +/- 26 pM (n = 3) and a maximal number of binding sites (Bmax) of 36.2 +/- 2.0 and 49.5 +/- 6.6 fmol/mg of protein in solubilized and membrane fractions, respectively. The KD values obtained from the ratio of kinetic constants (k2/k1) in solubilized and membrane preparations were 228 and 216 pM, respectively. Inhibition studies indicated the following order of pharmacological affinities for both membrane and solubilized sites: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than prazosin greater than N-acetylserotonin much greater than serotonin greater than metergoline greater than ketanserin greater than propranolol greater than phentolamine greater than cyproheptadine. Guanyl nucleotides inhibited binding of 2-[125I]iodomelatonin to solubilized and membrane fractions, by converting binding sites from a high-affinity to a low-affinity state. These findings show that solubilized binding sites for melatonin exhibit the specific binding and pharmacological characteristics present in membrane-bound sites. Moreover, the retention of sensitivity to guanine nucleotides in fractions solubilized with CHAPS suggests that this solubilization procedure is suitable for further studies aimed at the isolation, purification, and molecular characterization of active melatonin binding sites.  相似文献   

18.
The possibilities to solubilize the rat brain cortex muscarinic acetylcholine receptor and its complex with [3H]-L-quinuclidinyl benzilate (QNB) were studied, using 14 detergents. It was shown that the native muscarinic cholinoreceptor was solubilized in addition to digitonin, also by CHAPS, with a 6% yield. Besides, the receptor-QNB complex was solubilized with the detergents Triton X-100, -102, -114, -165 (with 30% and 50% yields) and within a narrow concentration range with sodium dodecyl sulfate (50% yield). Some detergents of the Tween series, e.g., Triton X-45 and -305, as well as sodium deoxycholate and sodium oxycholate, did not solubilize the native receptor and its complex with QNB. It was found that yield of receptor solubilization did not exceed half of the total number of the receptor sites in the membranes, despite the fact that different concentrations of detergents were applied. The solubilization yield did not increase, when different mixtures of detergents were used. It was assumed that incomplete solubilization of the receptor protein reflects its heterogeneity in the membrane structure.  相似文献   

19.
Bombesin and structurally related peptides including gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells. Here we attempted to solubilize bombesin receptors under conditions in which the ligand (125I-labelled GRP) was prebound to the receptor prior to detergent extraction. We found that 125I-GRP-receptor complexes were solubilized from Swiss 3T3 cell membranes by using the detergents taurodeoxycholate or deoxycholate. These detergents promoted ligand-receptor solubilization in a dose-dependent manner. In contrast, a variety of other detergents including Triton X-100, octylglycoside, CHAPS, digitonin, cholic acid and n-dodecyl-beta-D-maltoside, were much less effective. Addition of guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) to ligand-receptor complexes isolated by gel filtration enhanced the rate of ligand dissociation in a concentration-dependent and nucleotide-specific manner. Our results demonstrate for the first time the successful solubilization of 125I-GRP-receptor complexes from Swiss 3T3 cell membranes and provide evidence for the physical association between the ligand-receptor complex and a guanine nucleotide binding protein(s).  相似文献   

20.
We investigated the interaction of the N-formyl peptide receptor (NFPR) with G proteins in infected Sf9 insect cells expressing the recombinant NFPR. Recombinant receptor expression of up to 27 pmol/mg protein was achieved in these cells. The receptor was recognized by an antiserum raised against an NFPR carboxyl-terminal peptide, and displayed specific and saturable binding of the formyl peptide ligand fMet-Leu-[3H]Phe. Scatchard analysis of the binding data yielded a dissociation constant of approximately 62 nM, a binding affinity of 60- to 120-fold lower than that of the high affinity sites in neutrophils and in transfected mammalian cell lines expressing the NFPR. That this low binding affinity was due to a lack of receptor coupling to G protein was suggested by the failure of guanine nucleotides to regulate receptor affinity and by the lack of formyl peptide-stimulated GTPase activity in these cells. Furthermore, immunoblotting with an anti-G(i) antibody and ADP-ribosylation experiments indicated that the approximately 40-kDa G(i) alpha subunit, which couples to the NFPR in neutrophils, is not present in Sf9 cell membranes. Thus, the current study provides for the first time evidence that a major G protein is absent in the Sf9 insect cells. Potential applications of the Sf9 system for in vitro reconstitution of the NFPR-G protein interaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号