首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection.  相似文献   

2.
Integrins and cell signaling in chondrocytes   总被引:7,自引:0,他引:7  
Loeser RF 《Biorheology》2002,39(1-2):119-124
Integrins are adhesion receptor heterodimers that transmit information from the extracellular matrix (ECM) to the cell through activation of cell signaling pathways. Chondrocytes express several members of the integrin family including alpha5beta1 which is the primary chondrocyte receptor for fibronectin. Cell signaling mediated through integrins regulates several chondrocyte functions including differentiation, matrix remodeling, responses to mechanical stimulation and cell survival. Integrin-mediated activation of members of the mitogen-activated protein kinase family likely plays a key role in transmitting signals regulating chondrocyte gene expression. Upstream mediators of mitogen-activated protein kinase (MAP kinase) activation include focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (pyk2) which are both expressed by chondrocytes. A better understanding of chondrocyte integrin signaling is needed to define the mechanisms by which the ECM regulates chondrocyte function.  相似文献   

3.
The beta(1) integrin, functioning as a mechanoreceptor, senses a mechanical stimulus generated during collagen matrix contraction and down-regulates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signal triggering apoptosis. The identities of integrin-associated signal molecules in the focal adhesion complex that are responsible for propagating beta(1) integrin viability signals in response to collagen matrix contraction are not known. Here we show that in response to collagen contraction focal adhesion kinase (FAK) is dephosphorylated. In contrast, enforced activation of beta(1) integrin by anti-beta(1) integrin antibody, which protects fibroblasts from apoptosis, preserves FAK phosphorylation. We demonstrate that ligation of beta(1) integrin by type I collagen or by enforced activation of beta(1) integrin by antibody promotes phosphorylation of FAK, p85 subunit of PI3K, and serine 473 of Akt. Wortmannin inhibited Akt but not FAK phosphorylation in response to enforced activation of beta(1) integrin by antibody. Blocking FAK by pharmacologic inhibition or by dominant negative FAK attenuated phosphorylation of p85 subunit of PI3K and Akt. Dominant negative FAK augmented fibroblast apoptosis during collagen contraction, and this was associated with diminished Akt activity. Constitutively active FAK augmented levels of p85 subunit of PI3K and Akt phosphorylation, and fibroblasts were protected from apoptosis. Our data identify a novel role for FAK, functioning upstream of PI3K/Akt, in transducing a beta(1) integrin viability signal in collagen matrices.  相似文献   

4.
Integrin-extracellular matrix interactions play important roles in the coordinated integration of external and internal cues that are essential for proper development. To study the role of beta1 integrin in the mammary gland, Itgbeta1(flox/flox) mice were crossed with WAPiCre transgenic mice, which led to specific ablation of beta1 integrin in luminal alveolar epithelial cells. In the beta1 integrin mutant mammary gland, individual alveoli were disorganized resulting from alterations in cell-basement membrane associations. Activity of focal adhesion kinase (FAK) was also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in beta1 integrin mutant glands, which correlated with a specific increase of p21 Cip1 expression. In a p21 Cip1 null background, there was a partial rescue of BrdU incorporation, providing in vivo evidence linking p21 Cip1 to the proliferative defect observed in beta1 integrin mutant glands. A connection between p21 Cip1 and beta1 integrin as well as FAK was also established in primary mammary cells. These results point to the essential role of beta1 integrin signaling in mammary epithelial cell proliferation.  相似文献   

5.
The mechanisms regulating involution of mammary glands after weaning are not clear, but engorgement with milk is a key trigger. Many cell types require to be anchored to an extracellular matrix (ECM) as a prerequisite for survival and this is achieved via intregrins binding to specific motifs and signalling their attachment, intracellularly, via focal adhesion kinase (FAK). We sought to determine firstly, if expression of beta1-integrin and FAK is reduced during the first stage of involution. Expression of beta1-integrin and FAK was significantly reduced at 6 h after sealing teats and this was accompanied with a decreased abundance of cytochrome C in mitochondria. Secondly, we sought to determine if expression of beta1-integrin and FAK was restored during the first, partially reversible stage of involution (at 24 h), but not during the second irreversible stage, which occurs after 72 h. Re-suckling restored full expression of the 80 kDa fragment of FAK, but not of the 125 kDa protein or beta1-integrin at 24 h after weaning. Re-suckling did not restore expression of either peptide after 72 h. Changes in expression of cytochrome C and pro-caspase-3 (apoptotic markers) were similar to that of the 80 kDa fragment of FAK. These data suggest that epithelial cells can restore partial contact with their basement membrane during the first, reversible stage, but not during the second irreversible stage of involution. We speculate that decreased contact between epithelial cells and their basement membrane initiates apoptosis in mammary glands at weaning. This process begins within 6 h of pup withdrawal.  相似文献   

6.
Salmosin, a disintegrin purified from a Korean snake (Agkistrodon halys brevicaudus) venom, interacts with integrin alpha(v)beta(3) and inhibits the proliferation of bovine capillary endothelial (BCE) cells induced by basic fibroblast growth factor (bFGF). We investigated salmosin's mechanism of inhibition of BCE cell proliferation by examining changes in the cytoskeleton and activation of integrin-mediated signaling molecules. Salmosin disassembled cortical actins at focal adhesions and induced cells to be rounded and detached, but it did not alter microtubule structures in the early stage of cells being rounded. Immunolocalization of paxillin also demonstrated that focal adhesions were disassembled by salmosin. In salmosin-treated BCE cells, focal adhesion kinase (FAK) was dephosphorylated and expression of paxillin and p130(CAS) was decreased, but PI3 kinase, ILK, and beta-catenin were not expressed in decreased amounts or modified, suggesting that salmosin inactivated FAK-dependent integrin signaling pathways. While BCE cells proliferated normally on plates coated with salmosin, cells treated with salmosin eventually underwent apoptosis. These observations strongly suggest that salmosin disorganizes focal contacts to detach cells by competing with the extracellular matrix (ECM) for direct binding to integrin alpha(v)beta(3) on the cell surface, eventually leading to apoptosis.  相似文献   

7.
8.
Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B16F10 cells, which are metastatic in the lungs of syngeneic C57BL/6J mice. Combined treatment with SeMet-METase decreased the expression of integrins alpha(4), beta(1), alpha(nu), and beta(3), and inhibited melanoma-ECM adhesion. Caspase-mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin-mediated survival, were decreased upon treatment with SeMet-METase while phosphorylation of p38, PKC-delta, and IkappaBalpha increased. In the presence of specific inhibitors of p38, PKC-delta, and NF-kappaB, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet-METase-treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP-ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet-METase. Based on these results, we propose that combined treatment with SeMet-METase induces caspase-mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC-delta, and NF-kappaB is a prerequisite for the down-regulation of integrin expression, followed by detachment-mediated apoptosis.  相似文献   

9.
Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following 7 days culture in modeled microgravity (MMG). One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen (Col I)-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix (ECM) proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of MMG on integrin expression and function in hMSC. We demonstrate that 7 days of culture in MMG leads to reduced expression of the ECM protein, Col I. Conversely, MMG consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin subunit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt protein kinase (Akt) is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-mitogen activated protein kinase (MAPK) pathway is evidenced by a reduction in Ras and extracellular signal-related protein kinase (ERK) activation. Taken together, our findings indicate that MMG decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.  相似文献   

10.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with alterations in integrin signaling. We now investigated whether differentiation and apoptosis of Caco-2 cells induced by the short-chain fatty acid butyrate (NaBT) was associated with alterations in the integrin-mediated signaling pathway with special interest in the expression and activity of focal adhesion kinase (FAK), of the downstream phosphatidylinositol 3'-kinase (PI 3-kinase)-Akt pathway and in the role of the nuclear factor kappaB (NF-kappaB). NaBT increased the level of sucrase. It induced apoptosis as shown by: (1) decreased Bcl-2 and Bcl-X(L) proteins and increased Bax protein; (2) activation of caspase-3; and (3) increased shedding of apoptotic cells in the medium. This effect was associated with defective integrin-mediated signaling as shown by: (1) down-regulation of beta1 integrin expression; 2) decreased FAK expression and tyrosine phosphorylation; (3) concerted alterations in cytoskeletal and structural focal adhesions proteins (talin, ezrin); and (4) decreased FAK ability to associate with PI 3-kinase. However, in Caco-2 cells, beta1-mediated signaling failed to be activated downstream of FAK and PI 3-kinase at the level of Akt. Transfection studies show that NaBT treatment of Caco-2 cells promoted a significant activation of the NF-kappaB which was probably involved in the NaBT-induced apoptosis. Our results indicate that the prodifferentiating agent NaBT induced apoptosis of Caco-2 cells probably through NF-kappaB activation together with a defective beta1 integrin-FAK-PI 3-kinase pathways signaling.  相似文献   

11.
Das S  Banerji A  Frei E  Chatterjee A 《Life sciences》2008,82(9-10):467-476
Interactions between tumour cells and the extracellular matrix (ECM) strongly influence tumour development, affecting cell survival, proliferation and migration. Many of these interactions are mediated through a family of cell surface receptors named integrins. Fibronectin and its integrin receptors play important roles in tumour development. The alpha5beta 1 integrin interacts with the central cell adhesive region of fibronectin and requires both the RGD and synergy sites for maximal binding. Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases. They are capable of digesting the different components of the ECM and basement membrane. The ECM gives structural support to cells and plays a central role in cell adhesion, differentiation, proliferation and migration. Binding of ECM to integrins modulates expression and activity of the different MMPs. Our experimental findings demonstrate that cultivation of human breast cancer cells, MCF-7, in serum free medium in the presence of fibronectin upregulates the activity of MMP-2 and MMP-9. Blocking of alpha5beta 1 integrin with anti-alpha5 monoclonal antibody inhibits the fibronectin-induced MMP activation response appreciably. This strongly indicates alpha5beta 1 mediated signalling events in activation of MMP-2 and MMP-9. Phosphorylation of FAK and PI-3 kinase and the nuclear translocation of ERK and NF-kappaB upon fibronectin binding demonstrate possible participation of the FAK/PI-3K/ERK signalling pathways in the regulation of MMP-2 activity.  相似文献   

12.
13.
Cell adhesion to extracellular matrix (ECM) components through cell-surface integrin receptors is essential to the formation, maintenance and repair of numerous tissues, and therefore represents a central theme in the design of bioactive materials that successfully interface with the body. While the adhesive responses associated with a single ligand have been extensively analyzed, the effects of multiple integrin subtypes binding to multivalent ECM signals remain poorly understood. In the present study, we generated a high throughput platform of non-adhesive surfaces presenting well-defined, independent densities of two integrin-specific engineered ligands for the type I collagen (COL-I) receptor alpha(2)beta(1) and the fibronectin (FN) receptor alpha(5)beta(1) to evaluate the effects of integrin cross-talk on adhesive responses. Engineered surfaces displayed ligand density-dependent adhesive effects, and mixed ligand surfaces significantly enhanced cell adhesion strength and focal adhesion assembly compared to single FN and COL-I ligand surfaces. Moreover, surfaces presenting mixed COL-I/FN ligands synergistically enhanced FAK activation compared to the single ligand substrates. The enhanced adhesive activities of the mixed ligand surfaces also promoted elevated proliferation rates. Our results demonstrate interplay between multivalent ECM ligands in adhesive responses and downstream cellular signaling.  相似文献   

14.
Inhibition of pp125FAK in cultured fibroblasts results in apoptosis   总被引:17,自引:0,他引:17       下载免费PDF全文
《The Journal of cell biology》1996,135(5):1383-1390
The tyrosine kinase called pp125FAK is believed to play an important role in integrin-mediated signal transduction. pp125FAK is associated both functionally and spatially with integrins, which are the cell surface receptors for extracellular matrix components. Although the precise function of pp125FAK is not known, two possibilities have been proposed: pp125FAK may regulate the assembly of focal adhesions in spreading or migrating cells, or pp125FAK may participate in a signal transduction cascade to inform the nucleus that the cell is anchored. To test these models in living cells, a peptide representing the focal adhesion kinase (FAK)-binding site of the beta 1 tail was coupled to carrier protein and injected into cultured cells to competitively inhibit the binding of pp125FAK to endogenous integrin, thus inhibiting activation of pp125FAK on a cell-by-cell basis. In addition, an antibody directed against an epitope adjacent to the focal adhesion targeting sequence on pp125FAK was microinjected, as an alternative means of inhibiting pp125FAK activation. It was observed that when rounded cells were injected with either the integrin peptide or the anti-FAK antibody, the cells rapidly began to apoptose, within 4 h after injection. These results indicate that pp125FAK may play a critical role in suppressing apoptosis in fibroblasts.  相似文献   

15.
In previous study, we have shown that beta1,4-galactosyltransferase V (GalT V) functions as a positive growth regulator in glioma. Here, we reported that down-regulation of the expression of GalT V in SHG44 cells by transfection with antisense cDNA specifically up-regulated the expression of cell surface integrin beta1 without the change of its mRNA, and with integrin beta1 125 kDa mature form increased and 105 kDa precursor form decreased. It is well known that the N-glycans of integrins modulate the location and functions of integrins. The SHG44 cells transfected with antisense cDNA of GalT V demonstrated decreased Golgi localization of integrin beta1, strengthened the interaction between integrin alpha5 and beta1 subunit, and enhanced the adhesion ability to fibronectin and the level of focal adhesion kinase phosphorylation. Our results suggested that the down-regulation of the expression of GalT V could promote the expression of cell surface integrin beta1 and subsequently inhibit glioma malignant phenotype.  相似文献   

16.
Membrane-bound integrin receptors are linked to intracellular signaling pathways through focal adhesion kinase (FAK). FAK tends to colocalize with integrin receptors at focal adhesions through its C-terminal focal adhesion targeting (FAT) domain. Through recruitment and binding of intracellular proteins, FAs transduce signals between the intracellular and extracellular regions that regulate a variety of cellular processes including cell migration, proliferation, apoptosis and detachment from the ECM. The mechanism of signaling through the cell is of interest, especially the transmission of mechanical forces and subsequent transduction into biological signals. One hypothesis relates mechanotransduction to conformational changes in intracellular proteins in the force transmission pathway, connecting the extracellular matrix with the cytoskeleton through FAs. To assess this hypothesis, we performed steered molecular dynamics simulations to mechanically unfold FAT and monitor how force-induced changes in the molecular conformation of FAT affect its binding to paxillin.  相似文献   

17.
Signaling through focal adhesion kinase   总被引:48,自引:0,他引:48  
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.  相似文献   

18.
Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell-matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.  相似文献   

19.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

20.
Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor β (TGF‐β). However, the molecular mechanisms by which microbes induce the activation of TGF‐β remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF‐β receptor (TGF‐βR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF‐βR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF‐β by cooperating with integrin. Accordingly, we hypothesized that Omp29‐induced actin rearrangements via FAK activity would enhance the activation of TGF‐β, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF‐βR/smad2 signalling and decreased active TGF‐β protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF‐βR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinβ1 expression by siRNA transfection attenuated TGF‐βR/smad2 signalling activity and reduction of TGF‐β levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinβ1, which is associated with TGF‐β signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29‐induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinβ1/FAK signalling‐dependent TGF‐β release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF‐βR/smad2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号